Google Developers Codelabs 提供引導式教學課程,讓您親身體驗程式設計。大多數程式碼研究室都會逐步引導您建構小型應用程式,或者為現有應用程式新增功能。他們 涵蓋 Android Wear、Google Compute Engine 等 ARCore 和 Google API。

GitHub 上的程式碼研究室工具

篩選條件:

選擇主題
選擇產品
選擇事件

Updated 2025年3月6日

本程式碼研究室將說明如何使用邏輯迴歸,瞭解性別、年齡層、曝光時間和瀏覽器類型等特徵,與使用者按下廣告的可能性有多大的關聯。 如要完成這個程式碼研究室,您需要足夠的高品質廣告活動資料來建立模型。 首先,請選取含有大量高品質資料的舊廣告活動。要是不確定哪個廣告活動含有最佳品質的資料,不妨針對時間最早且可存取的整月資料執行以下查詢: 選取較舊的資料後,您就能針對即將從廣告資料中心移除的資料訓練及測試模型。如果這項資料受到模型訓練限制,資料刪除後,這些限制就會結束。

Updated 2025年3月6日

本程式碼研究室將說明如何使用邏輯迴歸,瞭解性別、年齡層、曝光時間和瀏覽器類型等特徵,與使用者按下廣告的可能性有多大的關聯。 如要完成這個程式碼研究室,您需要足夠的高品質廣告活動資料來建立模型。 首先,請選取含有大量高品質資料的舊廣告活動。要是不確定哪個廣告活動含有最佳品質的資料,不妨針對時間最早且可存取的整月資料執行以下查詢: 選取非近期資料後,您就能針對即將從廣告資料中心移除的資料訓練及測試模型。如果這項資料受到模型訓練限制,資料刪除後,這些限制就會結束。

Updated 2025年3月6日

本程式碼研究室將說明如何使用線性迴歸建立模型,以便預測單次點擊出價。 如要完成這個程式碼研究室,請務必符合以下條件: 如要完成這個程式碼研究室,您需要足夠的高品質廣告活動資料來建立模型。 執行下列查詢 最佳做法是將資料表建立步驟與模型建立步驟分開。 請針對您在上一個步驟建立的暫存資料表,執行以下查詢。請放心,您不用提供開始和結束日期,系統會根據暫存資料表的資料推斷這兩項資訊。 資料列 mean_absolute_error mean_squared_error

Updated 2025年3月6日

本程式碼研究室將說明如何使用線性迴歸建立模型,以便預測單次點擊出價。 如要完成這個程式碼研究室,您需要足夠的高品質廣告活動資料來建立模型。 執行下列查詢 最佳做法是將資料表建立步驟與模型建立步驟分開。 請針對您在上一個步驟建立的暫存資料表,執行以下查詢。請放心,您不用提供開始和結束日期,系統會根據暫存資料表的資料推斷這兩項資訊。 資料列 mean_absolute_error mean_squared_error mean_squared_log_error

1 小時 31 分鐘

Updated 2025年2月28日

在本程式碼實驗室中,您將建立 Spanner 例項,並使用 Spanner 內建的向量搜尋功能,以及與 Vertex AI 模型整合,對向量嵌入執行相似度搜尋。

Updated 2025年2月27日

在 Google Cloud Platform 上開發名為「Aidemy」的功能性 AI 輔助教學系統,展示多代理系統的強大功能。在 Google Cloud 上設計、建構及部署複雜的多代理系統,掌握 LLM 應用程式開發的關鍵概念,並瞭解事件導向架構的優點,累積實務經驗。

Updated 2025年2月27日

在本程式碼研究室中,您將建構以 RAG 為基礎的向量搜尋應用程式,用於為客戶搜尋相符的玩具 (透過文字和圖片)、根據使用者要求建立自訂玩具,以及使用 AlloyDB、Gemini、Imagen、LangChain4j 和資料庫專用的 GenAI Toolbox 預測自訂玩具的價格。

1 小時 32 分鐘

Updated 2025年2月26日

在本教學課程中,您將瞭解如何設定及驗證 Private Service Connect Vertex AI Pipelines

1 小時 12 分鐘

Updated 2025年2月25日

在本程式碼研究室中,您將學習如何在 GKE 叢集中部署 AlloyDB Omni、將 I 模型部署至相同叢集、在 AlloyDB Omni 中註冊模型,並讓兩者協同運作

1 小時 32 分鐘

Updated 2025年2月25日

在本程式碼研究室中,您將瞭解如何建立 AlloyDB 叢集、為資料庫部署 GenAI 資料庫檢索服務,以及使用這項服務建立範例應用程式。