1. Visão geral
Última atualização:18/10/2024
Escrito por Sanggyu Lee (sanggyulee@google.com)
O que você vai criar
Neste codelab, você vai criar um agente de IA generativa para clientes de varejo.
Esse app vai:
- Funciona em dispositivos móveis ou computadores.
- Você pode tirar uma foto de um item e fazer o pedido com o chat por voz.
- Confira como o app funciona: basta tirar uma foto do item e dizer, por exemplo, Quero pedir três caixas deste produto. Sou gerente do Walmart Honolulu." O app faz upload da foto para o Cloud Storage e transcreve a gravação de voz. Essas informações são enviadas para um modelo do Gemini na Vertex AI, que identifica o item e sua loja (Walmart Honolulu). Se a solicitação atender aos critérios de pedido de venda, o sistema vai gerar um pedido de venda com um ID exclusivo.
2. O que você vai aprender
O que você vai aprender
- Como criar um agente de IA com a Vertex AI
- Como enviar áudio e receber uma transcrição de texto do serviço da API Speech-to-Text
- Como implantar seu agente de IA no Cloud Run
Este codelab é focado em apps de agentes de IA generativa com o Gemini. Conceitos e blocos de códigos sem relevância não serão abordados. Eles são incluídos somente para você copiar e colar.
O que é necessário
- Conta do Google Cloud
- Conhecimento de Python, Javascript e Google Cloud
Arquitetura
Esse agente é para pedidos simplificados usando os recursos multimodais do Gemini com comandos de imagem e texto. Se o pedido for falado, o modelo Chirp 2 do Google Speech vai transcrever o áudio para texto, que será usado com uma imagem fornecida para consultar o modelo Gemini da Vertex AI.
Vamos criar :
- Criar um ambiente de desenvolvimento
- O app Flask é chamado pelos usuários por dispositivos móveis ou PC. O app será executado no Cloud Run.
3. Configuração e requisitos
Configuração de ambiente personalizada
- Faça login no Console do Google Cloud e crie um novo projeto ou reutilize um existente. Crie uma conta do Gmail ou do Google Workspace, se ainda não tiver uma.
- O nome do projeto é o nome de exibição dos participantes do projeto. É uma string de caracteres não usada pelas APIs do Google e pode ser atualizada quando você quiser.
- O ID do projeto é exclusivo em todos os projetos do Google Cloud e não pode ser mudado após a definição. O console do Cloud gera automaticamente uma string exclusiva. Em geral, não importa o que seja. Na maioria dos codelabs, é necessário fazer referência ao ID do projeto, normalmente identificado como PROJECT_ID. Se você não gostar do ID gerado, poderá gerar outro aleatoriamente. Se preferir, teste o seu e confira se ele está disponível. Ele não pode ser mudado após essa etapa e permanece durante o projeto.
- Para sua informação, há um terceiro valor, um Número do projeto, que algumas APIs usam. Saiba mais sobre esses três valores na documentação.
- Em seguida, ative o faturamento no console do Cloud para usar os recursos/APIs do Cloud. A execução deste codelab não vai ser muito cara, se tiver algum custo. Para encerrar os recursos e evitar cobranças além deste tutorial, exclua os recursos criados ou exclua o projeto. Novos usuários do Google Cloud estão qualificados para o programa de US$ 300 de avaliação sem custos.
Iniciar o Cloud Shell
Embora o Google Cloud e o Spanner possam ser operados remotamente do seu laptop, neste codelab usaremos o Google Cloud Shell, um ambiente de linha de comando executado no Cloud.
No Console do Google Cloud, clique no ícone do Cloud Shell na barra de ferramentas superior à direita:
O provisionamento e a conexão com o ambiente levarão apenas alguns instantes para serem concluídos: Quando o processamento for concluído, você verá algo como:
Essa máquina virtual contém todas as ferramentas de desenvolvimento necessárias. Ela oferece um diretório principal persistente de 5 GB, além de ser executada no Google Cloud. Isso aprimora o desempenho e a autenticação da rede. Neste codelab, todo o trabalho pode ser feito com um navegador. Você não precisa instalar nada.
4. Antes de começar
Ativar APIs
Ative as APIs necessárias para o laboratório. Isso levará alguns minutos.
gcloud services enable \ run.googleapis.com \ cloudbuild.googleapis.com \ aiplatform.googleapis.com \ speech.googleapis.com \ sqladmin.googleapis.com \ logging.googleapis.com \ compute.googleapis.com \ servicenetworking.googleapis.com \ monitoring.googleapis.com
Saída esperada do console :
Operation "operations/acf.p2-639929424533-ffa3a09b-7663-4b31-8f78-5872bf4ad778" finished successfully.
Configurar os ambientes
Antes do comando da CLI configurar os parâmetros para os ambientes do Google Cloud.
export PROJECT_ID="<YOUR_PROJECT_ID>" export VPC_NAME="<YOUR_VPC_NAME>" e.g : demonetwork export SUBNET_NAME="<YOUR_SUBNET_NAME>" e.g : genai-subnet export REGION="<YOUR_REGION>" e.g : us-central1 export GENAI_BUCKET="<YOUR BUCKET FOR AGENT>" # eg> genai-${PROJECT_ID}
For example :
export PROJECT_ID=$(gcloud config get-value project) export VPC_NAME="demonetwork" export SUBNET_NAME="genai-subnet" export REGION="us-central1" export GENAI_BUCKET="genai-${PROJECT_ID}"
5. Criar sua infraestrutura
Criar a rede para seu app
Crie uma VPC para seu app. Para criar a VPC com o nome "demonetwork", execute o seguinte :
gcloud compute networks create demonetwork \ --subnet-mode custom
Para criar a sub-rede "genai-subnet" com o intervalo de endereços 10.10.0.0/24 na rede "demonetwork", execute:
gcloud compute networks subnets create genai-subnet \ --network demonetwork \ --region us-central1 \ --range 10.10.0.0/24
Criar um Cloud SQL para PostgreSQL
Intervalos de endereços IP alocados para acesso a serviços particulares.
gcloud compute addresses create google-managed-services-my-network \ --global \ --purpose=VPC_PEERING \ --prefix-length=16 \ --description="peering range for Google" \ --network=demonetwork
Crie uma conexão particular.
gcloud services vpc-peerings connect \ --service=servicenetworking.googleapis.com \ --ranges=google-managed-services-my-network \ --network=demonetwork
Execute o comando gcloud sql instances create para criar uma instância do Cloud SQL.
gcloud sql instances create sql-retail-genai \ --database-version POSTGRES_14 \ --tier db-f1-micro \ --region=$REGION \ --project=$PROJECT_ID \ --network=projects/${PROJECT_ID}/global/networks/${VPC_NAME} \ --no-assign-ip \ --enable-google-private-path
Talvez leve alguns minutos para que o comando seja concluído.
Saída esperada do console :
Created [https://sqladmin.googleapis.com/sql/v1beta4/projects/evident-trees-438609-q3/instances/sql-retail-genai]. NAME: sql-retail-genai DATABASE_VERSION: POSTGRES_14 LOCATION: us-central1-c TIER: db-f1-micro PRIMARY_ADDRESS: - PRIVATE_ADDRESS: 10.66.0.3 STATUS: RUNNABLE
Criar um banco de dados para o app e o usuário
Execute o comando gcloud sql databases create para criar um banco de dados do Cloud SQL no sql-retail-genai.
gcloud sql databases create retail-orders \ --instance sql-retail-genai
Crie um usuário do banco de dados PostgreSQL e mude a senha.
gcloud sql users create aiagent --instance sql-retail-genai --password "genaiaigent2@"
Criar um bucket para armazenar imagens
Criar um bucket particular para o agente
gsutil mb -l $REGION gs://$GENAI_BUCKET
Atualizar permissões do bucket
gsutil iam ch serviceAccount:<your service account>: roles/storage.objectUser gs://$GENAI_BUCKET
Se você estiver usando a conta de serviço de computação padrão :
gsutil iam ch serviceAccount:$(gcloud projects describe $PROJECT_ID --format="value(projectNumber)")-compute@developer.gserviceaccount.com:roles/storage.objectUser gs://$GENAI_BUCKET
6. Preparar códigos para seu app
Preparar os códigos
O aplicativo da Web para fazer pedidos é criado usando o Flask e pode ser executado em um navegador da Web em dispositivos móveis ou PCs. Ele acessa o microfone e a câmera do dispositivo conectado e usa o modelo Chirp 2 do Google Speech e o modelo Gemini Pro 1.5 da Vertex AI. Os resultados do pedido são armazenados em um banco de dados do Cloud SQL.
Se você usou os nomes de variáveis de ambiente fornecidos na página anterior, use o código abaixo sem modificações. Se você tiver nomes de variáveis de ambiente personalizados, será necessário mudar alguns valores de variável no código.
Crie dois diretórios da seguinte maneira.
mkdir -p genai-agent/templates
Criar um requirements.txt
vi ~/genai-agent/requirements.txt
Insira uma lista de pacotes no arquivo de texto.
aiofiles==24.1.0
aiohappyeyeballs==2.4.3
aiohttp==3.10.9
aiosignal==1.3.1
annotated-types==0.7.0
asn1crypto==1.5.1
attrs==24.2.0
blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
cffi==1.17.1
charset-normalizer==3.3.2
click==8.1.7
cloud-sql-python-connector==1.12.1
cryptography==43.0.1
docstring_parser==0.16
Flask==3.0.3
frozenlist==1.4.1
google-api-core==2.20.0
google-auth==2.35.0
google-cloud-aiplatform==1.69.0
google-cloud-bigquery==3.26.0
google-cloud-core==2.4.1
google-cloud-resource-manager==1.12.5
google-cloud-speech==2.27.0
google-cloud-storage==2.18.2
google-crc32c==1.6.0
google-resumable-media==2.7.2
googleapis-common-protos==1.65.0
greenlet==3.1.1
grpc-google-iam-v1==0.13.1
grpcio==1.66.2
grpcio-status==1.66.2
idna==3.10
itsdangerous==2.2.0
Jinja2==3.1.4
MarkupSafe==3.0.0
multidict==6.1.0
numpy==2.1.2
packaging==24.1
pg8000==1.31.2
pgvector==0.3.5
proto-plus==1.24.0
protobuf==5.28.2
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycparser==2.22
pydantic==2.9.2
pydantic_core==2.23.4
python-dateutil==2.9.0.post0
requests==2.32.3
rsa==4.9
scramp==1.4.5
shapely==2.0.6
six==1.16.0
SQLAlchemy==2.0.35
typing_extensions==4.12.2
urllib3==2.2.3
Werkzeug==3.0.4
yarl==1.13.1
Criar um main.py
vi ~/genai-agent/main.py
Insira o código Python no arquivo main.py.
from flask import Flask, render_template, request, jsonify, Response
import os
import base64
from google.api_core.client_options import ClientOptions
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech
import vertexai
from vertexai.generative_models import GenerativeModel, Part, SafetySetting
from google.cloud import storage
import uuid # Import the uuid module
from typing import Dict # Add this import
import datetime
import json
import re
import os
from google.cloud.sql.connector import Connector
import pg8000
import sqlalchemy
from sqlalchemy import create_engine, text
app = Flask(__name__)
# Replace with your actual project ID
project_id = os.environ.get("PROJECT_ID")
# Use a connection pool to reuse connections and improve performance
# This also handles connection lifecycle management automatically
engine = None
# Configure Google Cloud Storage
storage_client = storage.Client()
bucket_name = os.environ.get("GENAI_BUCKET")
client = SpeechClient(
client_options=ClientOptions(
api_endpoint="us-central1-speech.googleapis.com",
),
)
def get_engine():
global engine # Use global to access/modify the global engine variable
if engine is None: # Create the engine only once
connector = Connector()
def getconn() -> pg8000.dbapi.Connection:
conn: pg8000.dbapi.Connection = connector.connect(
os.environ["INSTANCE_CONNECTION_NAME"], # Cloud SQL instance connection name
"pg8000",
user=os.environ["DB_USER"],
password=os.environ["DB_PASS"],
db=os.environ["DB_NAME"],
ip_type="PRIVATE",
)
return conn
engine = create_engine(
"postgresql+pg8000://",
creator=getconn,
pool_pre_ping=True, # Check connection validity before use
pool_size=5, # Adjust pool size as needed
max_overflow=2, # Allow some overflow for bursts
pool_recycle=300, # Recycle connections after 5 minutes
)
return engine
def migrate_db() -> None:
engine = get_engine() # Get the engine (creates it if necessary)
with engine.begin() as conn:
sql = """
CREATE TABLE IF NOT EXISTS image_sales_orders (
order_id SERIAL PRIMARY KEY,
vendor_name VARCHAR(80) NOT NULL,
order_item VARCHAR(100) NOT NULL,
order_boxes INT NOT NULL,
time_cast TIMESTAMP NOT NULL
);
"""
conn.execute(text(sql))
@app.before_request
def init_db():
migrate_db()
#print("Migration complete.")
@app.route('/')
def index():
return render_template('index.html')
@app.route('/orderlist')
def orderlist():
engine = get_engine()
with engine.connect() as conn:
sql = text("""
SELECT order_id, vendor_name, order_item, order_boxes, time_cast
FROM image_sales_orders
ORDER BY time_cast DESC
""")
result = conn.execute(sql).mappings() # Use .mappings() for dict-like access
orders = []
for row in result:
order = {
'OrderId': row['order_id'],
'VendorName': row['vendor_name'],
'OrderItem': row['order_item'],
'OrderBoxes': row['order_boxes'],
'OrderDate': row['time_cast'].strftime('%Y-%m-%d'),
'OrderTime': row['time_cast'].strftime('%H:%M:%S'),
}
orders.append(order)
return render_template('orderlist.html', orders=orders)
@app.route("/upload_photo", methods=["POST"])
def upload_photo():
# Get the uploaded file
file = request.files["photo"]
# Generate a unique filename
filename = f"{uuid.uuid4()}--{file.filename}"
# Upload the file to Google Cloud Storage
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(filename)
generation_match_precondition = 0
blob.upload_from_file(file, if_generation_match=generation_match_precondition)
# Return the destination filename
image_url = f"gs://{bucket_name}/{filename}"
# Return the destination filename
return image_url
@app.route('/upload', methods=['POST'])
def upload():
audio_data = request.form['audio_data']
audio_data = base64.b64decode(audio_data.split(',')[1])
audio_path = f"{uuid.uuid4()}--audio.wav"
with open(audio_path, 'wb') as f:
f.write(audio_data)
transcript = transcribe_speech(audio_path)
os.remove(audio_path)
return jsonify({'transcript': transcript})
@app.route("/orders", methods=["POST"])
def cast_order() -> Response:
prompt = request.form['transcript']
image_url = request.form['image_url']
print(f"Prompt: {prompt}")
print(f"Image URL: {image_url}")
model_response = generate(image_url=image_url, prompt=prompt)
# Extract the text content from the model response
response_text = model_response.text if hasattr(model_response, 'text') else str(model_response)
#print(f"Response from Model !!!!!!: {response_text}")
try:
response_json = json.loads(response_text)
function_name = response_json.get("function")
parameters = response_json.get("parameters")
except json.JSONDecodeError as e:
logging.error(f"JSON decoding error: {e}")
return Response(
"I cannot fulfill your request because I cannot find the [Product Name], [Quantity (Box)], and [Retail Store Name] in the provided image and prompt.",
status=500
)
if function_name == 'Z_SALES_ORDER_SRV/orderlistSet':
engine = get_engine()
with engine.connect() as conn:
try:
# Explicitly convert order_boxes to integer
order_boxes = int(parameters["order_boxes"])
vendor_name = parameters["vendor_name"]
order_item = parameters["order_item"]
# Prepare the SQL statement
sql = text("""
INSERT INTO image_sales_orders (vendor_name, order_item, order_boxes, time_cast)
VALUES (:vendor_name, :order_item, :order_boxes, NOW())
""")
# Prepare parameters
params = {
"vendor_name": vendor_name,
"order_item": order_item,
"order_boxes": order_boxes,
}
# Execute the SQL statement with parameters
conn.execute(sql, params)
conn.commit()
response_message = f"Dear [{vendor_name}],\n\nYour order has been completed as follows. \n\nItem Name : {order_item}\nQTY(Boxes) : {order_boxes}\n\nThanks."
return Response(response_message, status=200)
except (KeyError, ValueError) as e:
logging.error(f"Error inserting into database: {e}")
response_message = "Error processing your order. Please check the input data."
return Response(response_message, status=500)
else:
# Handle other function names if necessary
return Response("Unknown function.", status=400)
def transcribe_speech(audio_file):
with open(audio_file, "rb") as f:
content = f.read()
config = cloud_speech.RecognitionConfig(
auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
language_codes=["auto"],
#language_codes=["ko-KR"], -- In case that needs to choose specific language
model="chirp_2",
)
request = cloud_speech.RecognizeRequest(
recognizer=f"projects/{project_id}/locations/us-central1/recognizers/_",
config=config,
content=content,
)
response = client.recognize(request=request)
transcript = ""
for result in response.results:
transcript += result.alternatives[0].transcript
return transcript
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=int(os.environ.get("PORT", 8080)))
#app.run(debug=True)
def generate(image_url,prompt):
vertexai.init(project=project_id, location="us-central1")
model = GenerativeModel("gemini-1.5-pro-002")
image1 = Part.from_uri(uri=image_url, mime_type="image/jpeg")
prompt_default = """A retail store will give you an image with order details as an Input. You will identify the order details and provide an output as the following json format. You should not add any comment on it. The Box quantity should be arabic number. You can extract the item name from a given image or prompt. However, you should extract the retail store name or the quantity from only the text prompt but not the given image. All parameter values are strings. Don't assume any parameters. Do not wrap the json codes in JSON markers.
{\"function\":\"Z_SALES_ORDER_SRV/orderlistSet\",\"parameters\":{\"vendor_name\":Retail store name,\"order_item\":Item name,\"order_boxes\":Box quantity}}
If you are not clear on any parameter, provide the output as follows.
{\"function\":\"None\"}
You should not use the json markdown for the result.
Input :"""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0,
"top_p": 0.95,
}
safety_settings = [
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
]
responses = model.generate_content(
[prompt_default, image1, prompt],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
response = ""
for content in responses:
response += content.text
print(f"Content: {content}")
print(f"Content type: {type(content)}")
print(f"Content attributes: {dir(content)}")
print(f"response_texts={response}")
if response.startswith('json'):
return clean_json_string(response)
else:
return response
def clean_json_string(json_string):
pattern = r'^```json\s*(.*?)\s*```$'
cleaned_string = re.sub(pattern, r'\1', json_string, flags=re.DOTALL)
return cleaned_string.strip()
Criar o index.html
vi ~/genai-agent/templates/index.html
Insira o código HTML no arquivo index.html.
<!DOCTYPE html>
<html>
<head>
<title>GenAI Agent for Retail</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
/* Styles adjusted for chatbot interface */
body {
font-family: Arial, sans-serif;
background-color: #343541;
margin: 0;
padding: 0;
display: flex;
flex-direction: column;
height: 100vh;
}
.chat-container {
flex: 1;
overflow-y: auto;
padding: 10px;
background-color: #343541;
}
.message {
max-width: 80%;
margin-bottom: 15px;
padding: 10px;
border-radius: 10px;
color: #dcdcdc;
word-wrap: break-word;
}
.user-message {
background-color: #3e3f4b;
align-self: flex-end;
}
.assistant-message {
background-color: #444654;
align-self: flex-start;
}
.message-input {
padding: 10px;
background-color: #40414f;
display: flex;
align-items: center;
}
.message-input textarea {
flex: 1;
padding: 10px;
border: none;
border-radius: 5px;
resize: none;
background-color: #40414f;
color: #dcdcdc;
height: 40px;
max-height: 100px;
overflow-y: auto;
}
.message-input button {
padding: 15px;
margin-left: 5px;
background-color: #19c37d;
border: none;
border-radius: 5px;
color: white;
font-weight: bold;
cursor: pointer;
flex-shrink: 0;
}
.image-preview {
max-width: 100%;
border-radius: 10px;
margin-bottom: 10px;
}
.hidden {
display: none;
}
/* Media queries for responsive design */
@media screen and (max-width: 600px) {
.message {
max-width: 100%;
}
.message-input {
flex-direction: column;
}
.message-input textarea {
width: 100%;
margin-bottom: 10px;
}
.message-input button {
width: 100%;
margin: 5px 0;
}
}
</style>
</head>
<body>
<div class="chat-container" id="chat-container">
<!-- Messages will be appended here -->
</div>
<div class="message-input">
<input type="file" name="photo" id="photo" accept="image/*" capture="camera" class="hidden">
<button id="uploadImageButton">📷</button>
<button id="recordButton">🎤</button>
<textarea id="transcript" rows="1" placeholder="Enter a message here by voice or typing..."></textarea>
<button id="sendButton">Send</button>
</div>
<script>
const chatContainer = document.getElementById('chat-container');
const transcriptInput = document.getElementById('transcript');
const sendButton = document.getElementById('sendButton');
const recordButton = document.getElementById('recordButton');
const uploadImageButton = document.getElementById('uploadImageButton');
const photoInput = document.getElementById('photo');
let mediaRecorder;
let audioChunks = [];
let imageUrl = '';
function appendMessage(content, sender) {
const messageDiv = document.createElement('div');
messageDiv.classList.add('message', sender === 'user' ? 'user-message' : 'assistant-message');
if (typeof content === 'string') {
const messageContent = document.createElement('p');
messageContent.innerText = content;
messageDiv.appendChild(messageContent);
} else {
messageDiv.appendChild(content);
}
chatContainer.appendChild(messageDiv);
chatContainer.scrollTop = chatContainer.scrollHeight;
}
sendButton.addEventListener('click', () => {
const message = transcriptInput.value.trim();
if (message !== '') {
appendMessage(message, 'user');
// Prepare form data
const formData = new FormData();
formData.append('transcript', message);
formData.append('image_url', imageUrl);
// Send the message to the server
fetch('/orders', {
method: 'POST',
body: formData
})
.then(response => response.text())
.then(data => {
appendMessage(data, 'assistant');
// Reset imageUrl after sending
imageUrl = '';
})
.catch(error => {
console.error('Error:', error);
});
transcriptInput.value = '';
}
});
transcriptInput.addEventListener('keypress', (e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendButton.click();
}
});
recordButton.addEventListener('click', async () => {
if (mediaRecorder && mediaRecorder.state === 'recording') {
mediaRecorder.stop();
recordButton.innerText = '🎤';
return;
}
let stream = await navigator.mediaDevices.getUserMedia({ audio: true });
mediaRecorder = new MediaRecorder(stream);
mediaRecorder.start();
recordButton.innerText = '⏹️';
mediaRecorder.ondataavailable = event => {
audioChunks.push(event.data);
};
mediaRecorder.onstop = async () => {
let audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
audioChunks = [];
let reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = () => {
let base64String = reader.result;
// Send the audio data to the server
fetch('/upload', {
method: 'POST',
headers: {
'Content-Type': 'application/x-www-form-urlencoded'
},
body: 'audio_data=' + encodeURIComponent(base64String)
})
.then(response => response.json())
.then(data => {
transcriptInput.value = data.transcript;
})
.catch(error => {
console.error('Error:', error);
});
};
};
});
uploadImageButton.addEventListener('click', () => {
photoInput.click();
});
photoInput.addEventListener('change', function() {
if (photoInput.files && photoInput.files[0]) {
const file = photoInput.files[0];
const reader = new FileReader();
reader.onload = function(e) {
const img = document.createElement('img');
img.src = e.target.result;
img.classList.add('image-preview');
appendMessage(img, 'user');
};
reader.readAsDataURL(file);
const formData = new FormData();
formData.append('photo', photoInput.files[0]);
// Upload the image to the server
fetch('/upload_photo', {
method: 'POST',
body: formData,
})
.then(response => response.text())
.then(url => {
imageUrl = url;
})
.catch(error => {
console.error('Error uploading photo:', error);
});
}
});
</script>
</body>
</html>
Criar um arquivo orderlist.html
vi ~/genai-agent/templates/orderlist.html
Insira o código HTML no arquivo orderlist.html.
<!DOCTYPE html>
<html>
<head>
<title>Order List</title>
<style>
body {
font-family: sans-serif;
line-height: 1.6;
margin: 20px;
background-color: #f4f4f4;
color: #333;
}
h1 {
text-align: center;
color: #28a745; /* Green header */
}
table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Add a subtle shadow */
}
th, td {
padding: 12px 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
th {
background-color: #28a745; /* Green header background */
color: white;
}
tr:nth-child(even) {
background-color: #f8f9fa; /* Alternating row color */
}
tr:hover {
background-color: #e9ecef; /* Hover effect */
}
</style>
</head>
<body>
<h1>Order List</h1>
<table>
<thead>
<tr>
<th>Order ID</th>
<th>Retail Store Name</th>
<th>Order Item</th>
<th>Order Boxes</th>
<th>Order Date</th>
<th>Order Time</th>
</tr>
</thead>
<tbody>
{% for order in orders %}
<tr>
<td>{{ order.OrderId }}</td>
<td>{{ order.VendorName }}</td>
<td>{{ order.OrderItem }}</td>
<td>{{ order.OrderBoxes }}</td>
<td>{{ order.OrderDate }}</td>
<td>{{ order.OrderTime }}</td>
</tr>
{% endfor %}
</tbody>
</table>
</body>
</html>
7. Implantar o app flask no Cloud Run
No diretório genai-agent, use o seguinte comando para implantar o app no Cloud Run:
cd ~/genai-agent
gcloud run deploy --source . genai-agent-sales-order \ --set-env-vars=PROJECT_ID=$PROJECT_ID \ --set-env-vars=REGION=$REGION \ --set-env-vars=INSTANCE_CONNECTION_NAME="${PROJECT_ID}:${REGION}:sql-retail-genai" \ --set-env-vars=DB_USER=aiagent \ --set-env-vars=DB_PASS=genaiaigent2@ \ --set-env-vars=DB_NAME=retail-orders \ --set-env-vars=GENAI_BUCKET=$GENAI_BUCKET \ --network=$PROJECT_ID \ --subnet=$SUBNET_NAME \ --vpc-egress=private-ranges-only \ --region=$REGION \ --allow-unauthenticated
Saída esperada :
Deploying from source requires an Artifact Registry Docker repository to store built containers. A repository named [cloud-run-source-deploy] in region [us-central1] will be created. Do you want to continue (Y/n)? Y
Isso vai levar alguns minutos, e você vai ver o URL do serviço se ele for concluído.
Saída esperada :
.......... Building using Buildpacks and deploying container to Cloud Run service [genai-agent-sales-order] in project [xxxx] region [us-central1] ✓ Building and deploying... Done. ✓ Uploading sources... ✓ Building Container... Logs are available at [https://console.cloud.google.com/cloud-build/builds/395d141c-2dcf-465d-acfb-f97831c448c3?project=xxxx]. ✓ Creating Revision... ✓ Routing traffic... ✓ Setting IAM Policy... Done. Service [genai-agent-sales-order] revision [genai-agent-sales-order-00013-ckp] has been deployed and is serving 100 percent of traffic. Service URL: https://genai-agent-sales-order-xxxx.us-central1.run.app
Você também pode verificar o URL do serviço no console do Cloud Run.
8. Teste
- Digite o URL do serviço gerado na etapa anterior da implantação do Cloud Run no seu dispositivo móvel ou laptop.
- Tire uma foto de um item do pedido e digite ou diga a quantidade do pedido(caixas) e o nome da loja de varejo. <ex> "Quero pedir estas três caixas. Não, desculpe, sete caixas. Este é o Walmart Mountain View"
- Clique em "Enviar" e verifique se o pedido foi concluído.
- Você pode conferir o histórico de pedidos em {Service URL}/orderlist
9. Parabéns
Parabéns! Você criou um agente GenAI capaz de automatizar processos de negócios usando o Gemini na multimodalidade da Vertex AI.
Estou ansioso para que você modifique as solicitações e personalize o agente de acordo com suas necessidades específicas.