1. Обзор
Последнее обновление: 18 октября 2024 г.
Автор Сангю Ли (sanggyulee@google.com)
Что ты построишь
В этой лаборатории кода вы создадите агент GenAI для розничных клиентов.
Ваше приложение будет:
- Он работает на мобильном или настольном компьютере.
- Вы можете сфотографировать товар и заказать его с помощью голосового чата.
- Вот как работает приложение: вы просто фотографируете товар и говорите, например: « Я хочу заказать вот это, 3 коробки. Я менеджер Walmart Honolulu». Приложение загружает фотографию в Cloud Storage и расшифровывает ее. запись вашего голоса. Затем эта информация отправляется в модель Gemini на Vertex AI, которая идентифицирует товар и ваш магазин (Walmart Honolulu). Если запрос соответствует критериям заказа на продажу, система создает заказ на продажу с уникальным идентификатором.
2. Чему вы научитесь
Что вы узнаете
- Как создать ИИ-агент с помощью Vertex AI
- Как отправить аудио и получить транскрипцию текста из службы API преобразования речи в текст
- Как развернуть свой ИИ-агент в Cloud Run
Эта лаборатория ориентирована на приложения-агенты GenAI с Gemini. Нерелевантные концепции и блоки кода замалчиваются и предоставляются для простого копирования и вставки.
Что вам понадобится
- Облачный аккаунт Google
- Знание Python, Javascript и Google Cloud.
Архитектура
Этот агент предназначен для упрощенного заказа с использованием мультимодальных функций Gemini с графическими и текстовыми подсказками. Если приказ произнесен вслух, модель Chirp 2 Google Speech транскрибирует его в текст, который затем используется вместе с предоставленным изображением для запроса модели Vertex AI Gemini.
Мы построим:
- Создайте среду разработки
- Приложение Flask, которое пользователи могут вызывать через мобильный телефон или ПК. Приложение будет работать в Cloud Run.
3. Настройка и требования
Самостоятельная настройка среды
- Войдите в Google Cloud Console и создайте новый проект или повторно используйте существующий. Если у вас еще нет учетной записи Gmail или Google Workspace, вам необходимо ее создать .
- Имя проекта — это отображаемое имя для участников этого проекта. Это строка символов, не используемая API Google. Вы всегда можете обновить его.
- Идентификатор проекта уникален для всех проектов Google Cloud и является неизменяемым (невозможно изменить после его установки). Cloud Console автоматически генерирует уникальную строку; обычно тебя не волнует, что это такое. В большинстве лабораторий кода вам потребуется указать идентификатор проекта (обычно идентифицируемый как PROJECT_ID). Если вам не нравится сгенерированный идентификатор, вы можете создать другой случайный идентификатор. Альтернативно, вы можете попробовать свой собственный и посмотреть, доступен ли он. Его нельзя изменить после этого шага и он сохраняется на протяжении всего проекта.
- К вашему сведению, есть третье значение — номер проекта, который используют некоторые API. Подробнее обо всех трех этих значениях читайте в документации .
- Затем вам необходимо включить выставление счетов в Cloud Console, чтобы использовать облачные ресурсы/API. Прохождение этой кодовой лаборатории не будет стоить много, если вообще что-то стоить. Чтобы отключить ресурсы и избежать выставления счетов за пределами этого руководства, вы можете удалить созданные вами ресурсы или удалить проект. Новые пользователи Google Cloud имеют право на участие в программе бесплатной пробной версии стоимостью 300 долларов США .
Запустить Cloud Shell
Хотя Google Cloud можно управлять удаленно с вашего ноутбука, в этой лаборатории вы будете использовать Google Cloud Shell , среду командной строки, работающую в облаке.
В Google Cloud Console щелкните значок Cloud Shell на верхней правой панели инструментов:
Подготовка и подключение к среде займет всего несколько минут. Когда все будет готово, вы должны увидеть что-то вроде этого:
Эта виртуальная машина оснащена всеми необходимыми инструментами разработки. Он предлагает постоянный домашний каталог объемом 5 ГБ и работает в Google Cloud, что значительно повышает производительность сети и аутентификацию. Всю работу в этой лаборатории кода можно выполнять в браузере. Вам не нужно ничего устанавливать.
4. Прежде чем начать
Включить API
Включите API, необходимые для лаборатории. Это занимает несколько минут.
gcloud services enable \ run.googleapis.com \ cloudbuild.googleapis.com \ aiplatform.googleapis.com \ speech.googleapis.com \ sqladmin.googleapis.com \ logging.googleapis.com \ compute.googleapis.com \ servicenetworking.googleapis.com \ monitoring.googleapis.com
Ожидаемый вывод консоли:
Operation "operations/acf.p2-639929424533-ffa3a09b-7663-4b31-8f78-5872bf4ad778" finished successfully.
Настройка среды
Перед командой CLI настройте параметры Google Cloud Environments.
export PROJECT_ID="<YOUR_PROJECT_ID>" export VPC_NAME="<YOUR_VPC_NAME>" e.g : demonetwork export SUBNET_NAME="<YOUR_SUBNET_NAME>" e.g : genai-subnet export REGION="<YOUR_REGION>" e.g : us-central1 export GENAI_BUCKET="<YOUR BUCKET FOR AGENT>" # eg> genai-${PROJECT_ID}
Например :
export PROJECT_ID=$(gcloud config get-value project) export VPC_NAME="demonetwork" export SUBNET_NAME="genai-subnet" export REGION="us-central1" export GENAI_BUCKET="genai-${PROJECT_ID}"
5. Создайте свою инфраструктуру
Создайте сеть для своего приложения
Создайте VPC для своего приложения. Чтобы создать VPC с именем «demonetwork», выполните:
gcloud compute networks create demonetwork \ --subnet-mode custom
Чтобы создать подсеть «genai-subnet» с диапазоном адресов 10.10.0.0/24 в сети «demonetwork», выполните:
gcloud compute networks subnets create genai-subnet \ --network demonetwork \ --region us-central1 \ --range 10.10.0.0/24
Создайте Cloud SQL для PostgreSQL
Выделенные диапазоны IP-адресов для доступа к частным услугам.
gcloud compute addresses create google-managed-services-my-network \ --global \ --purpose=VPC_PEERING \ --prefix-length=16 \ --description="peering range for Google" \ --network=demonetwork
Создайте частное соединение.
gcloud services vpc-peerings connect \ --service=servicenetworking.googleapis.com \ --ranges=google-managed-services-my-network \ --network=demonetwork
Запустите команду создания экземпляров gcloud sql , чтобы создать экземпляр Cloud SQL.
gcloud sql instances create sql-retail-genai \ --database-version POSTGRES_14 \ --tier db-f1-micro \ --region=$REGION \ --project=$PROJECT_ID \ --network=projects/${PROJECT_ID}/global/networks/${VPC_NAME} \ --no-assign-ip \ --enable-google-private-path
Выполнение этой команды может занять несколько минут.
Ожидаемый вывод консоли:
Created [https://sqladmin.googleapis.com/sql/v1beta4/projects/evident-trees-438609-q3/instances/sql-retail-genai]. NAME: sql-retail-genai DATABASE_VERSION: POSTGRES_14 LOCATION: us-central1-c TIER: db-f1-micro PRIMARY_ADDRESS: - PRIVATE_ADDRESS: 10.66.0.3 STATUS: RUNNABLE
Создайте базу данных для вашего приложения и пользователя.
Запустите команду создания баз данных gcloud sql , чтобы создать базу данных Cloud SQL в файле sql-retail-genai.
gcloud sql databases create retail-orders \ --instance sql-retail-genai
Создайте пользователя базы данных PostgreSQL, пароль лучше сменить.
gcloud sql users create aiagent --instance sql-retail-genai --password "genaiaigent2@"
Создайте корзину для хранения изображений
Создайте приватную корзину для своего агента
gsutil mb -l $REGION gs://$GENAI_BUCKET
Обновить разрешения сегмента
gsutil iam ch serviceAccount:<your service account>: roles/storage.objectUser gs://$GENAI_BUCKET
Если вы предполагаете использовать учетную запись вычислительной службы по умолчанию:
gsutil iam ch serviceAccount:$(gcloud projects describe $PROJECT_ID --format="value(projectNumber)")-compute@developer.gserviceaccount.com:roles/storage.objectUser gs://$GENAI_BUCKET
6. Подготовьте коды для вашего приложения
Подготовьте коды
Веб-приложение для размещения заказов создано с использованием Flask и может быть запущено в веб-браузере на мобильном телефоне или ПК. Он получает доступ к микрофону и камере подключенного устройства и использует модель Chirp 2 от Google Speech и модель Gemini Pro 1.5 от Vertex AI. Результаты заказа хранятся в базе данных Cloud SQL.
Если вы использовали примеры имен переменных среды, приведенные на предыдущей странице, вы можете использовать приведенный ниже код без изменений. Если у вас настроены имена переменных среды, вам потребуется соответствующим образом изменить некоторые значения переменных в коде.
Создайте два каталога следующим образом.
mkdir -p genai-agent/templates
Создайте файл требований.txt
vi ~/genai-agent/requirements.txt
Введите список пакетов в текстовый файл.
aiofiles==24.1.0
aiohappyeyeballs==2.4.3
aiohttp==3.10.9
aiosignal==1.3.1
annotated-types==0.7.0
asn1crypto==1.5.1
attrs==24.2.0
blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
cffi==1.17.1
charset-normalizer==3.3.2
click==8.1.7
cloud-sql-python-connector==1.12.1
cryptography==43.0.1
docstring_parser==0.16
Flask==3.0.3
frozenlist==1.4.1
google-api-core==2.20.0
google-auth==2.35.0
google-cloud-aiplatform==1.69.0
google-cloud-bigquery==3.26.0
google-cloud-core==2.4.1
google-cloud-resource-manager==1.12.5
google-cloud-speech==2.27.0
google-cloud-storage==2.18.2
google-crc32c==1.6.0
google-resumable-media==2.7.2
googleapis-common-protos==1.65.0
greenlet==3.1.1
grpc-google-iam-v1==0.13.1
grpcio==1.66.2
grpcio-status==1.66.2
idna==3.10
itsdangerous==2.2.0
Jinja2==3.1.4
MarkupSafe==3.0.0
multidict==6.1.0
numpy==2.1.2
packaging==24.1
pg8000==1.31.2
pgvector==0.3.5
proto-plus==1.24.0
protobuf==5.28.2
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycparser==2.22
pydantic==2.9.2
pydantic_core==2.23.4
python-dateutil==2.9.0.post0
requests==2.32.3
rsa==4.9
scramp==1.4.5
shapely==2.0.6
six==1.16.0
SQLAlchemy==2.0.35
typing_extensions==4.12.2
urllib3==2.2.3
Werkzeug==3.0.4
yarl==1.13.1
Создайте файл main.py
vi ~/genai-agent/main.py
Введите код Python в файл main.py.
from flask import Flask, render_template, request, jsonify, Response
import os
import base64
from google.api_core.client_options import ClientOptions
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech
import vertexai
from vertexai.generative_models import GenerativeModel, Part, SafetySetting
from google.cloud import storage
import uuid # Import the uuid module
from typing import Dict # Add this import
import datetime
import json
import re
import os
from google.cloud.sql.connector import Connector
import pg8000
import sqlalchemy
from sqlalchemy import create_engine, text
app = Flask(__name__)
# Replace with your actual project ID
project_id = os.environ.get("PROJECT_ID")
# Use a connection pool to reuse connections and improve performance
# This also handles connection lifecycle management automatically
engine = None
# Configure Google Cloud Storage
storage_client = storage.Client()
bucket_name = os.environ.get("GENAI_BUCKET")
client = SpeechClient(
client_options=ClientOptions(
api_endpoint="us-central1-speech.googleapis.com",
),
)
def get_engine():
global engine # Use global to access/modify the global engine variable
if engine is None: # Create the engine only once
connector = Connector()
def getconn() -> pg8000.dbapi.Connection:
conn: pg8000.dbapi.Connection = connector.connect(
os.environ["INSTANCE_CONNECTION_NAME"], # Cloud SQL instance connection name
"pg8000",
user=os.environ["DB_USER"],
password=os.environ["DB_PASS"],
db=os.environ["DB_NAME"],
ip_type="PRIVATE",
)
return conn
engine = create_engine(
"postgresql+pg8000://",
creator=getconn,
pool_pre_ping=True, # Check connection validity before use
pool_size=5, # Adjust pool size as needed
max_overflow=2, # Allow some overflow for bursts
pool_recycle=300, # Recycle connections after 5 minutes
)
return engine
def migrate_db() -> None:
engine = get_engine() # Get the engine (creates it if necessary)
with engine.begin() as conn:
sql = """
CREATE TABLE IF NOT EXISTS image_sales_orders (
order_id SERIAL PRIMARY KEY,
vendor_name VARCHAR(80) NOT NULL,
order_item VARCHAR(100) NOT NULL,
order_boxes INT NOT NULL,
time_cast TIMESTAMP NOT NULL
);
"""
conn.execute(text(sql))
@app.before_request
def init_db():
migrate_db()
#print("Migration complete.")
@app.route('/')
def index():
return render_template('index.html')
@app.route('/orderlist')
def orderlist():
engine = get_engine()
with engine.connect() as conn:
sql = text("""
SELECT order_id, vendor_name, order_item, order_boxes, time_cast
FROM image_sales_orders
ORDER BY time_cast DESC
""")
result = conn.execute(sql).mappings() # Use .mappings() for dict-like access
orders = []
for row in result:
order = {
'OrderId': row['order_id'],
'VendorName': row['vendor_name'],
'OrderItem': row['order_item'],
'OrderBoxes': row['order_boxes'],
'OrderDate': row['time_cast'].strftime('%Y-%m-%d'),
'OrderTime': row['time_cast'].strftime('%H:%M:%S'),
}
orders.append(order)
return render_template('orderlist.html', orders=orders)
@app.route("/upload_photo", methods=["POST"])
def upload_photo():
# Get the uploaded file
file = request.files["photo"]
# Generate a unique filename
filename = f"{uuid.uuid4()}--{file.filename}"
# Upload the file to Google Cloud Storage
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(filename)
generation_match_precondition = 0
blob.upload_from_file(file, if_generation_match=generation_match_precondition)
# Return the destination filename
image_url = f"gs://{bucket_name}/{filename}"
# Return the destination filename
return image_url
@app.route('/upload', methods=['POST'])
def upload():
audio_data = request.form['audio_data']
audio_data = base64.b64decode(audio_data.split(',')[1])
audio_path = f"{uuid.uuid4()}--audio.wav"
with open(audio_path, 'wb') as f:
f.write(audio_data)
transcript = transcribe_speech(audio_path)
os.remove(audio_path)
return jsonify({'transcript': transcript})
@app.route("/orders", methods=["POST"])
def cast_order() -> Response:
prompt = request.form['transcript']
image_url = request.form['image_url']
print(f"Prompt: {prompt}")
print(f"Image URL: {image_url}")
model_response = generate(image_url=image_url, prompt=prompt)
# Extract the text content from the model response
response_text = model_response.text if hasattr(model_response, 'text') else str(model_response)
#print(f"Response from Model !!!!!!: {response_text}")
try:
response_json = json.loads(response_text)
function_name = response_json.get("function")
parameters = response_json.get("parameters")
except json.JSONDecodeError as e:
logging.error(f"JSON decoding error: {e}")
return Response(
"I cannot fulfill your request because I cannot find the [Product Name], [Quantity (Box)], and [Retail Store Name] in the provided image and prompt.",
status=500
)
if function_name == 'Z_SALES_ORDER_SRV/orderlistSet':
engine = get_engine()
with engine.connect() as conn:
try:
# Explicitly convert order_boxes to integer
order_boxes = int(parameters["order_boxes"])
vendor_name = parameters["vendor_name"]
order_item = parameters["order_item"]
# Prepare the SQL statement
sql = text("""
INSERT INTO image_sales_orders (vendor_name, order_item, order_boxes, time_cast)
VALUES (:vendor_name, :order_item, :order_boxes, NOW())
""")
# Prepare parameters
params = {
"vendor_name": vendor_name,
"order_item": order_item,
"order_boxes": order_boxes,
}
# Execute the SQL statement with parameters
conn.execute(sql, params)
conn.commit()
response_message = f"Dear [{vendor_name}],\n\nYour order has been completed as follows. \n\nItem Name : {order_item}\nQTY(Boxes) : {order_boxes}\n\nThanks."
return Response(response_message, status=200)
except (KeyError, ValueError) as e:
logging.error(f"Error inserting into database: {e}")
response_message = "Error processing your order. Please check the input data."
return Response(response_message, status=500)
else:
# Handle other function names if necessary
return Response("Unknown function.", status=400)
def transcribe_speech(audio_file):
with open(audio_file, "rb") as f:
content = f.read()
config = cloud_speech.RecognitionConfig(
auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
language_codes=["auto"],
#language_codes=["ko-KR"], -- In case that needs to choose specific language
model="chirp_2",
)
request = cloud_speech.RecognizeRequest(
recognizer=f"projects/{project_id}/locations/us-central1/recognizers/_",
config=config,
content=content,
)
response = client.recognize(request=request)
transcript = ""
for result in response.results:
transcript += result.alternatives[0].transcript
return transcript
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=int(os.environ.get("PORT", 8080)))
#app.run(debug=True)
def generate(image_url,prompt):
vertexai.init(project=project_id, location="us-central1")
model = GenerativeModel("gemini-1.5-pro-002")
image1 = Part.from_uri(uri=image_url, mime_type="image/jpeg")
prompt_default = """A retail store will give you an image with order details as an Input. You will identify the order details and provide an output as the following json format. You should not add any comment on it. The Box quantity should be arabic number. You can extract the item name from a given image or prompt. However, you should extract the retail store name or the quantity from only the text prompt but not the given image. All parameter values are strings. Don't assume any parameters. Do not wrap the json codes in JSON markers.
{\"function\":\"Z_SALES_ORDER_SRV/orderlistSet\",\"parameters\":{\"vendor_name\":Retail store name,\"order_item\":Item name,\"order_boxes\":Box quantity}}
If you are not clear on any parameter, provide the output as follows.
{\"function\":\"None\"}
You should not use the json markdown for the result.
Input :"""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0,
"top_p": 0.95,
}
safety_settings = [
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
]
responses = model.generate_content(
[prompt_default, image1, prompt],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
response = ""
for content in responses:
response += content.text
print(f"Content: {content}")
print(f"Content type: {type(content)}")
print(f"Content attributes: {dir(content)}")
print(f"response_texts={response}")
if response.startswith('json'):
return clean_json_string(response)
else:
return response
def clean_json_string(json_string):
pattern = r'^```json\s*(.*?)\s*```$'
cleaned_string = re.sub(pattern, r'\1', json_string, flags=re.DOTALL)
return cleaned_string.strip()
Создать индекс.html
vi ~/genai-agent/templates/index.html
Введите HTML-код в файл index.html.
<!DOCTYPE html>
<html>
<head>
<title>GenAI Agent for Retail</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
/* Styles adjusted for chatbot interface */
body {
font-family: Arial, sans-serif;
background-color: #343541;
margin: 0;
padding: 0;
display: flex;
flex-direction: column;
height: 100vh;
}
.chat-container {
flex: 1;
overflow-y: auto;
padding: 10px;
background-color: #343541;
}
.message {
max-width: 80%;
margin-bottom: 15px;
padding: 10px;
border-radius: 10px;
color: #dcdcdc;
word-wrap: break-word;
}
.user-message {
background-color: #3e3f4b;
align-self: flex-end;
}
.assistant-message {
background-color: #444654;
align-self: flex-start;
}
.message-input {
padding: 10px;
background-color: #40414f;
display: flex;
align-items: center;
}
.message-input textarea {
flex: 1;
padding: 10px;
border: none;
border-radius: 5px;
resize: none;
background-color: #40414f;
color: #dcdcdc;
height: 40px;
max-height: 100px;
overflow-y: auto;
}
.message-input button {
padding: 15px;
margin-left: 5px;
background-color: #19c37d;
border: none;
border-radius: 5px;
color: white;
font-weight: bold;
cursor: pointer;
flex-shrink: 0;
}
.image-preview {
max-width: 100%;
border-radius: 10px;
margin-bottom: 10px;
}
.hidden {
display: none;
}
/* Media queries for responsive design */
@media screen and (max-width: 600px) {
.message {
max-width: 100%;
}
.message-input {
flex-direction: column;
}
.message-input textarea {
width: 100%;
margin-bottom: 10px;
}
.message-input button {
width: 100%;
margin: 5px 0;
}
}
</style>
</head>
<body>
<div class="chat-container" id="chat-container">
<!-- Messages will be appended here -->
</div>
<div class="message-input">
<input type="file" name="photo" id="photo" accept="image/*" capture="camera" class="hidden">
<button id="uploadImageButton">📷</button>
<button id="recordButton">🎤</button>
<textarea id="transcript" rows="1" placeholder="Enter a message here by voice or typing..."></textarea>
<button id="sendButton">Send</button>
</div>
<script>
const chatContainer = document.getElementById('chat-container');
const transcriptInput = document.getElementById('transcript');
const sendButton = document.getElementById('sendButton');
const recordButton = document.getElementById('recordButton');
const uploadImageButton = document.getElementById('uploadImageButton');
const photoInput = document.getElementById('photo');
let mediaRecorder;
let audioChunks = [];
let imageUrl = '';
function appendMessage(content, sender) {
const messageDiv = document.createElement('div');
messageDiv.classList.add('message', sender === 'user' ? 'user-message' : 'assistant-message');
if (typeof content === 'string') {
const messageContent = document.createElement('p');
messageContent.innerText = content;
messageDiv.appendChild(messageContent);
} else {
messageDiv.appendChild(content);
}
chatContainer.appendChild(messageDiv);
chatContainer.scrollTop = chatContainer.scrollHeight;
}
sendButton.addEventListener('click', () => {
const message = transcriptInput.value.trim();
if (message !== '') {
appendMessage(message, 'user');
// Prepare form data
const formData = new FormData();
formData.append('transcript', message);
formData.append('image_url', imageUrl);
// Send the message to the server
fetch('/orders', {
method: 'POST',
body: formData
})
.then(response => response.text())
.then(data => {
appendMessage(data, 'assistant');
// Reset imageUrl after sending
imageUrl = '';
})
.catch(error => {
console.error('Error:', error);
});
transcriptInput.value = '';
}
});
transcriptInput.addEventListener('keypress', (e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendButton.click();
}
});
recordButton.addEventListener('click', async () => {
if (mediaRecorder && mediaRecorder.state === 'recording') {
mediaRecorder.stop();
recordButton.innerText = '🎤';
return;
}
let stream = await navigator.mediaDevices.getUserMedia({ audio: true });
mediaRecorder = new MediaRecorder(stream);
mediaRecorder.start();
recordButton.innerText = '⏹️';
mediaRecorder.ondataavailable = event => {
audioChunks.push(event.data);
};
mediaRecorder.onstop = async () => {
let audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
audioChunks = [];
let reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = () => {
let base64String = reader.result;
// Send the audio data to the server
fetch('/upload', {
method: 'POST',
headers: {
'Content-Type': 'application/x-www-form-urlencoded'
},
body: 'audio_data=' + encodeURIComponent(base64String)
})
.then(response => response.json())
.then(data => {
transcriptInput.value = data.transcript;
})
.catch(error => {
console.error('Error:', error);
});
};
};
});
uploadImageButton.addEventListener('click', () => {
photoInput.click();
});
photoInput.addEventListener('change', function() {
if (photoInput.files && photoInput.files[0]) {
const file = photoInput.files[0];
const reader = new FileReader();
reader.onload = function(e) {
const img = document.createElement('img');
img.src = e.target.result;
img.classList.add('image-preview');
appendMessage(img, 'user');
};
reader.readAsDataURL(file);
const formData = new FormData();
formData.append('photo', photoInput.files[0]);
// Upload the image to the server
fetch('/upload_photo', {
method: 'POST',
body: formData,
})
.then(response => response.text())
.then(url => {
imageUrl = url;
})
.catch(error => {
console.error('Error uploading photo:', error);
});
}
});
</script>
</body>
</html>
Создайте файл orderlist.html.
vi ~/genai-agent/templates/orderlist.html
Введите HTML-код в файл orderlist.html.
<!DOCTYPE html>
<html>
<head>
<title>Order List</title>
<style>
body {
font-family: sans-serif;
line-height: 1.6;
margin: 20px;
background-color: #f4f4f4;
color: #333;
}
h1 {
text-align: center;
color: #28a745; /* Green header */
}
table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Add a subtle shadow */
}
th, td {
padding: 12px 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
th {
background-color: #28a745; /* Green header background */
color: white;
}
tr:nth-child(even) {
background-color: #f8f9fa; /* Alternating row color */
}
tr:hover {
background-color: #e9ecef; /* Hover effect */
}
</style>
</head>
<body>
<h1>Order List</h1>
<table>
<thead>
<tr>
<th>Order ID</th>
<th>Retail Store Name</th>
<th>Order Item</th>
<th>Order Boxes</th>
<th>Order Date</th>
<th>Order Time</th>
</tr>
</thead>
<tbody>
{% for order in orders %}
<tr>
<td>{{ order.OrderId }}</td>
<td>{{ order.VendorName }}</td>
<td>{{ order.OrderItem }}</td>
<td>{{ order.OrderBoxes }}</td>
<td>{{ order.OrderDate }}</td>
<td>{{ order.OrderTime }}</td>
</tr>
{% endfor %}
</tbody>
</table>
</body>
</html>
7. Разверните приложение Flask в Cloud Run.
В каталоге genai-agent используйте следующую команду для развертывания приложения в Cloud Run:
cd ~/genai-agent
gcloud run deploy --source . genai-agent-sales-order \ --set-env-vars=PROJECT_ID=$PROJECT_ID \ --set-env-vars=REGION=$REGION \ --set-env-vars=INSTANCE_CONNECTION_NAME="${PROJECT_ID}:${REGION}:sql-retail-genai" \ --set-env-vars=DB_USER=aiagent \ --set-env-vars=DB_PASS=genaiaigent2@ \ --set-env-vars=DB_NAME=retail-orders \ --set-env-vars=GENAI_BUCKET=$GENAI_BUCKET \ --network=$PROJECT_ID \ --subnet=$SUBNET_NAME \ --vpc-egress=private-ranges-only \ --region=$REGION \ --allow-unauthenticated
Ожидаемый результат:
Deploying from source requires an Artifact Registry Docker repository to store built containers. A repository named [cloud-run-source-deploy] in region [us-central1] will be created. Do you want to continue (Y/n)? Y
Это займет несколько минут, и в случае успешного завершения вы увидите URL-адрес службы.
Ожидаемый результат:
.......... Building using Buildpacks and deploying container to Cloud Run service [genai-agent-sales-order] in project [xxxx] region [us-central1] ✓ Building and deploying... Done. ✓ Uploading sources... ✓ Building Container... Logs are available at [https://console.cloud.google.com/cloud-build/builds/395d141c-2dcf-465d-acfb-f97831c448c3?project=xxxx]. ✓ Creating Revision... ✓ Routing traffic... ✓ Setting IAM Policy... Done. Service [genai-agent-sales-order] revision [genai-agent-sales-order-00013-ckp] has been deployed and is serving 100 percent of traffic. Service URL: https://genai-agent-sales-order-xxxx.us-central1.run.app
Вы также можете проверить URL-адрес службы в консоли Cloud Run.
8. Тест
- Введите URL-адрес службы, созданный на предыдущем этапе развертывания Cloud Run, на своем мобильном телефоне или ноутбуке.
- Сделайте фотографию товара для вашего заказа и введите количество заказа (коробки) и название розничного магазина с помощью набора текста или голоса. <ex> «Я хочу заказать три коробки. Ой, нет, извините, семь коробок. Это Walmart Mountain Vew»
- Нажмите «Отправить» и проверьте, выполнен ли ваш заказ.
- Вы можете проверить историю заказов по адресу {Service URL}/orderlist.
9. Поздравления
Поздравляем! Вы создали агент GenAI, способный автоматизировать бизнес-процессы с помощью Gemini на основе мультимодальности Vertex AI.
Я рад, что вы измените подсказки и адаптируете агента к своим конкретным потребностям.