如何在 Cloud Run worker 集區中託管單輪 ADK 代理程式

1. 簡介

總覽

本程式碼研究室將說明如何使用 Agent Development Kit (ADK) 建構可擴充的非同步代理系統。您將建立 Cloud Run 工作站集區,用於代管 ADK 快速入門天氣代理程式,處理來自 Pub/Sub 提取訂閱項目的工作。

課程內容

  • 如何使用 Agent Development Kit (ADK) 建立單輪代理。
  • 如何部署從 Pub/Sub 訂閱項目提取資料的 Cloud Run 工作站集區。

2. 事前準備

啟用 API

開始使用本程式碼研究室前,請先執行下列指令,啟用下列 API:

gcloud services enable \
    run.googleapis.com \
    cloudbuild.googleapis.com \
    artifactregistry.googleapis.com \
    pubsub.googleapis.com \
    aiplatform.googleapis.com

3. 設定和需求

如要設定必要資源,請按照下列步驟操作:

  1. 為本程式碼研究室設定環境變數:
export PROJECT_ID=<YOUR_PROJECT_ID>
export REGION=europe-west1

# AR repo
export AR_REPO="codelab-agent-wp"

# Application Names
export WORKER_APP_NAME="multi-tool-agent-worker"

# Pub/Sub Resources
export MY_TOPIC="pull-pubsub-topic-agent"
export MY_SUBSCRIPTION="agent-wp-sub"

# Service Accounts
export WORKER_SA_NAME="agent-worker-sa"
export WORKER_SA_ADDRESS="${WORKER_SA_NAME}@${PROJECT_ID}.iam.gserviceaccount.com"

建立服務帳戶

為確保安全性,我們會為工作人員建立專屬服務帳戶,確保該帳戶只具備所需權限。

為工作人員建立服務帳戶:

gcloud iam service-accounts create ${WORKER_SA_NAME} \
    --display-name="Service Account for ADK Agent Worker"

將必要角色授予服務帳戶。這項服務必須從 Pub/Sub 提取訊息,並叫用 ADK 使用的 Vertex AI 模型。

# Role for subscribing to Pub/Sub
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
    --member="serviceAccount:${WORKER_SA_ADDRESS}" \
    --role="roles/pubsub.admin"

# Role for invoking Vertex AI
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
    --member="serviceAccount:${WORKER_SA_ADDRESS}" \
    --role="roles/aiplatform.user"

建立 Pub/Sub 資源

建立 Pub/Sub 主題,做為工作佇列。

gcloud pubsub topics create $MY_TOPIC

為工作站建立 Pub/Sub 訂閱項目,以便從中提取訊息。

gcloud pubsub subscriptions create $MY_SUBSCRIPTION --topic=$MY_TOPIC

4. 建立 Cloud Run worker 集區

為專案建立名為 agents-wp 的目錄。

mkdir agents-wp && cd agents-wp

建立 Dockerfile

touch Dockerfile

並在 Dockerfile 中新增下列內容

FROM python:3.11-slim
WORKDIR /app

# Create a non-root user
RUN adduser --disabled-password --gecos "" myuser

# Switch to the non-root user
USER myuser

# Set up environment variables
ENV PATH="/home/myuser/.local/bin:$PATH"

# Copy agent files
COPY --chown=myuser:myuser multi_tool_agent/ /app/multi_tool_agent/

# Install dependencies from requirements.txt
RUN pip install -r /app/multi_tool_agent/requirements.txt

# Set the entrypoint to run the agent as a worker
CMD ["python3", "/app/multi_tool_agent/main.py"]

在其中建立名為 multi_tool_agent 的子目錄。請注意資料夾名稱 multi_tool_agent 中的底線。這個資料夾的名稱必須與稍後部署的 ADK 代理程式名稱相符。

mkdir multi_tool_agent && cd multi_tool_agent

建立 __init__.py 檔案

touch __init__.py

並在 __init__.py 檔案中加入以下內容

from . import agent

建立 agent.py 檔案

touch agent.py

並在 agent.py 檔案中新增以下內容

import datetime
from zoneinfo import ZoneInfo

from google.adk.agents.llm_agent import Agent

def get_weather(city: str) -> dict:
    """Retrieves the current weather report for a specified city.

    Args:
        city (str): The name of the city for which to retrieve the weather report.

    Returns:
        dict: status and result or error msg.
    """
    print(f"--- Entering get_weather function for city: {city} ---")
    if city.lower() == "new york":
        result = {
            "status": "success",
            "report": (
                "The weather in New York is sunny with a temperature of 25 degrees"
                " Celsius (77 degrees Fahrenheit)."
            ),
        }
    else:
        result = {
            "status": "error",
            "error_message": f"Weather information for '{city}' is not available.",
        }
    print(f"--- Exiting get_weather function with result: {result} ---")
    return result


def get_current_time(city: str) -> dict:
    """Returns the current time in a specified city.

    Args:
        city (str): The name of the city for which to retrieve the current time.

    Returns:
        dict: status and result or error msg.
    """
    print(f"--- Entering get_current_time function for city: {city} ---")
    if city.lower() == "new york":
        tz_identifier = "America/New_York"
    else:
        result = {
            "status": "error",
            "error_message": (
                f"Sorry, I don't have timezone information for {city}."
            ),
        }
        print(f"--- Exiting get_current_time function with result: {result} ---")
        return result

    tz = ZoneInfo(tz_identifier)
    now = datetime.datetime.now(tz)
    report = (
        f'The current time in {city} is {now.strftime("%Y-%m-%d %H:%M:%S %Z%z")}'
    )
    result = {"status": "success", "report": report}
    print(f"--- Exiting get_current_time function with result: {result} ---")
    return result


print("--- Creating root_agent ---")
root_agent = Agent(
    name="weather_time_agent",
    model="gemini-2.5-flash",
    description=(
        "Agent to answer questions about the time and weather in a city."
    ),
    instruction=(
        "You are a helpful agent who can answer user questions about the time and weather in a city."
    ),
    tools=[get_weather, get_current_time],
)
print("--- root_agent created ---")

建立 main.py 檔案

touch main.py

並在 main.py 檔案中加入以下內容

import asyncio
import os

from google.adk.runners import InMemoryRunner, Runner
from google.genai import types
from google.cloud import pubsub_v1

from agent import root_agent

# --- Runner-based Invocation with Proper Async Handling ---

APP_NAME = "multi_tool_agent_worker"
USER_ID = "pubsub_user"

async def process_message(runner: Runner, message_data: bytes):
    """Processes a single message using the agent runner."""
    print(f"Processing message: {message_data}")
    try:
        prompt = message_data.decode("utf-8")
        session = await runner.session_service.create_session(
            app_name=APP_NAME,
            user_id=USER_ID
        )
        final_response_text = ""
        async for event in runner.run_async(
            user_id=USER_ID,
            session_id=session.id,
            new_message=types.Content(
                role="user", parts=[types.Part.from_text(text=prompt)]
            ),
        ):
            if event.content and event.content.parts:
                if event.author != "user":
                    # Filter out thought parts to get only the final response text
                    final_response_text += "".join(
                        part.text or "" for part in event.content.parts if not part.thought
                    )
        print(f"Agent response: {final_response_text}")

    except Exception as e:
        print(f"Error processing message: {e}")

async def async_worker(queue: asyncio.Queue, runner: Runner):
    """Continuously gets messages from the queue and processes them."""
    while True:
        message = await queue.get()
        if message is None:  # Sentinel for stopping
            break
        await process_message(runner, message.data)
        message.ack()
        queue.task_done()


async def main():
    """Sets up the Pub/Sub subscriber and the async worker."""
    project_id = os.environ.get("GOOGLE_CLOUD_PROJECT")
    subscription_id = os.environ.get("SUBSCRIPTION_ID")

    if not project_id or not subscription_id:
        print("GOOGLE_CLOUD_PROJECT and SUBSCRIPTION_ID environment variables must be set.")
        return

    runner = InMemoryRunner(agent=root_agent, app_name=APP_NAME)
    message_queue = asyncio.Queue()

    subscriber = pubsub_v1.SubscriberClient()
    subscription_path = subscriber.subscription_path(project_id, subscription_id)

    loop = asyncio.get_running_loop()

    callback = lambda message: loop.call_soon_threadsafe(
        message_queue.put_nowait, message
    )

    print(f"Listening for messages on {subscription_path}...\n")
    streaming_pull_future = subscriber.subscribe(subscription_path, callback=callback)

    worker_task = asyncio.create_task(async_worker(message_queue, runner))

    try:
        # This will block until the subscription is cancelled or an error occurs.
        await loop.run_in_executor(None, streaming_pull_future.result)
    except KeyboardInterrupt:
        print("Shutting down...")
    finally:
        streaming_pull_future.cancel()
        await message_queue.put(None)  # Stop the worker
        await worker_task  # Wait for the worker to finish
        await runner.close()
        subscriber.close()


if __name__ == "__main__":
    try:
        asyncio.run(main())
    except KeyboardInterrupt:
        print("Exiting.")

建立 requirements.txt 檔案

touch requirements.txt

並在 requirements.txt 檔案中加入以下內容

google-adk
google-cloud-pubsub
google-cloud-aiplatform

您的資料夾結構應如下所示

agents-wp
  - multi_tool_agent
      - __init__.py
      - agent.py
      - main.py
      - requirements.txt
  - Dockerfile

5. 建構及部署

建立 Artifact Registry 存放區

您需要儲存容器映像檔的位置。

gcloud artifacts repositories create codelab-agent-wp \
    --repository-format=docker \
    --location=${REGION} \
    --description="Repo for Cloud Run source deployments"

建構容器映像檔

前往 Dockerfile 所在的根 agents-wp 目錄

cd ..

並執行下列建構指令。

gcloud builds submit . --tag \
${REGION}-docker.pkg.dev/${PROJECT_ID}/${AR_REPO}/${WORKER_APP_NAME}:latest

部署至 Cloud Run

部署代理程式工作站映像檔。

gcloud beta run worker-pools deploy ${WORKER_APP_NAME} \
 --image=${REGION}-docker.pkg.dev/${PROJECT_ID}/${AR_REPO}/${WORKER_APP_NAME}:latest  \
 --service-account=${WORKER_SA_ADDRESS} \
 --region=${REGION} \
 --set-env-vars="SUBSCRIPTION_ID=${MY_SUBSCRIPTION}"  \
 --set-env-vars="PYTHONUNBUFFERED=1" \
 --set-env-vars="GOOGLE_GENAI_USE_VERTEXAI=1" \
 --set-env-vars="GOOGLE_CLOUD_PROJECT=${PROJECT_ID}" \
 --set-env-vars="GOOGLE_CLOUD_LOCATION=${REGION}"

6. 測試代理程式

您可以直接將訊息發布至 Pub/Sub 主題,藉此測試工作站。

gcloud pubsub topics publish ${MY_TOPIC} --message="What is the weather in New York?"

您可以執行這項指令,在 Google Cloud 控制台中查看 multi-tool-agent-worker 服務的記錄。

gcloud logging read 'resource.type="cloud_run_worker_pool" AND resource.labels.worker_pool_name="'$WORKER_APP_NAME'" AND resource.labels.location="'$REGION'"' --limit 10 --format="value(textPayload)"

您應該會看到輸出內容,指出系統已收到並處理訊息,接著是代理程式的回應。

Agent response: The weather in New York is sunny with a temperature of 25 degrees Celsius (77 degrees Fahrenheit).

7. 恭喜!

恭喜您完成本程式碼研究室!

建議您參閱 Cloud Run 說明文件,瞭解工作站集區主機代理程式

涵蓋內容

  • 如何使用 Agent Development Kit (ADK) 建立單輪代理。
  • 如何部署從 Pub/Sub 訂閱項目提取資料的 Cloud Run 工作站集區。

8. 清除

為避免產生任何費用,請刪除您建立的資源。

刪除 Cloud Run worker 集區

gcloud beta run worker-pools delete ${WORKER_APP_NAME} --region=${REGION}

刪除 Pub/Sub 資源

gcloud pubsub subscriptions delete ${MY_SUBSCRIPTION}

gcloud pubsub topics delete ${MY_TOPIC}

刪除 Artifact Registry 存放區

gcloud artifacts repositories delete ${AR_REPO} --location=$REGION

刪除服務帳戶

gcloud iam service-accounts delete ${WORKER_SA_ADDRESS}

如要刪除整個專案,請前往「管理資源」,選取您在步驟 2 中建立的專案,然後選擇「刪除」。刪除專案後,您必須在 Cloud SDK 中變更專案。如要查看所有可用專案的清單,請執行 gcloud projects list