1. 簡介
總覽
在本程式碼研究室中,您將使用 Cloud Run 工作來微調 Gemma 模型,然後使用 vLLM 在 Cloud Run 上提供結果。
為了完成本程式碼研究室,您將使用文字轉 SQL 資料集,讓 LLM 在收到自然語言問題時,以 SQL 查詢回覆。
課程內容
- 如何使用 Cloud Run 工作 GPU 進行精細調整
- 如何搭配 vLLM 使用 Cloud Run 提供模型
- 如何為 GPU 工作使用直接虛擬私有雲設定,以便加快模型上傳及服務的速度
2. 事前準備
啟用 API
開始使用本程式碼研究室前,請先執行以下 API 啟用作業:
gcloud services enable run.googleapis.com \
compute.googleapis.com \
run.googleapis.com \
cloudbuild.googleapis.com \
secretmanager.googleapis.com \
artifactregistry.googleapis.com
GPU 配額
申請提高支援地區的配額。在 Cloud Run Admin API 下,配額為 nvidia_l4_gpu_allocation_no_zonal_redundancy
。
注意:如果您使用的是新專案,啟用 API 後,可能需要幾分鐘,這個頁面才會顯示配額。
Hugging Face
本程式碼研究室使用 Hugging Face 託管的模型。如要取得這個模型,請使用「Read」權限要求 Hugging Face 使用者存取權杖。您稍後會以 YOUR_HF_TOKEN
的形式參照這個值區。
您也必須同意使用條款才能使用模型:https://huggingface.co/google/gemma-2b
3. 設定和需求
設定下列資源:
- IAM 服務帳戶和相關 IAM 權限
- Secret Manager 密鑰 (用於儲存 Hugging Face 權杖)
- Cloud Storage 值區,用於儲存經過微調的模型,
- Artifact Registry 存放區,用於儲存您用來微調模型的建構映像檔。
- 為本程式碼實驗室設定環境變數。我們已為您預先填入多個變數。指定專案 ID、區域和 Hugging Face 權杖。
export PROJECT_ID=<YOUR_PROJECT_ID> export REGION=<YOUR_REGION> export HF_TOKEN=<YOUR_HF_TOKEN> export AR_REPO=codelab-finetuning-jobs export IMAGE_NAME=finetune-to-gcs export JOB_NAME=finetuning-to-gcs-job export BUCKET_NAME=$PROJECT_ID-codelab-finetuning-jobs export SECRET_ID=HF_TOKEN export SERVICE_ACCOUNT="finetune-job-sa" export SERVICE_ACCOUNT_ADDRESS=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com
- 執行下列指令,建立服務帳戶:
gcloud iam service-accounts create $SERVICE_ACCOUNT \ --display-name="Service account for fine-tuning codelab"
- 使用 Secret Manager 儲存 Hugging Face 存取權杖:
gcloud secrets create $SECRET_ID \ --replication-policy="automatic" printf $HF_TOKEN | gcloud secrets versions add $SECRET_ID --data-file=-
- 將 Secret Manager 密鑰存取者角色授予服務帳戶:
gcloud secrets add-iam-policy-binding $SECRET_ID \ --member serviceAccount:$SERVICE_ACCOUNT_ADDRESS \ --role='roles/secretmanager.secretAccessor'
- 建立值區來代管微調後的模型:
gcloud storage buckets create -l $REGION gs://$BUCKET_NAME
- 授予服務帳戶對 bucket 的存取權:
gcloud storage buckets add-iam-policy-binding gs://$BUCKET_NAME \ --member=serviceAccount:$SERVICE_ACCOUNT_ADDRESS \ --role=roles/storage.objectAdmin
- 建立 Artifact Registry 存放區來儲存容器映像檔:
gcloud artifacts repositories create $AR_REPO \ --repository-format=docker \ --location=$REGION \ --description="codelab for finetuning using CR jobs" \ --project=$PROJECT_ID
4. 建立 Cloud Run 工作映像檔
在下一個步驟中,您將建立可執行以下操作的程式碼:
- 從 Hugging Face 匯入 Gemma 模型
- 使用 Hugging Face 的資料集對模型進行微調。該工作會使用單一 L4 GPU 進行精細調整。
- 將名為
new_model
的精修模型上傳至 Cloud Storage 值區
- 建立目錄來放置微調工作程式碼。
mkdir codelab-finetuning-job cd codelab-finetuning-job
- 建立名為
finetune.py
的檔案# Copyright 2024 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from datasets import load_dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, ) from peft import LoraConfig, PeftModel from trl import SFTTrainer # Cloud Storage bucket to upload the model bucket_name = os.getenv("BUCKET_NAME", "YOUR_BUCKET_NAME") # The model that you want to train from the Hugging Face hub model_name = os.getenv("MODEL_NAME", "google/gemma-2b") # The instruction dataset to use dataset_name = "b-mc2/sql-create-context" # Fine-tuned model name new_model = os.getenv("NEW_MODEL", "gemma-2b-sql") ################################################################################ # QLoRA parameters ################################################################################ # LoRA attention dimension lora_r = int(os.getenv("LORA_R", "4")) # Alpha parameter for LoRA scaling lora_alpha = int(os.getenv("LORA_ALPHA", "8")) # Dropout probability for LoRA layers lora_dropout = 0.1 ################################################################################ # bitsandbytes parameters ################################################################################ # Activate 4-bit precision base model loading use_4bit = True # Compute dtype for 4-bit base models bnb_4bit_compute_dtype = "float16" # Quantization type (fp4 or nf4) bnb_4bit_quant_type = "nf4" # Activate nested quantization for 4-bit base models (double quantization) use_nested_quant = False ################################################################################ # TrainingArguments parameters ################################################################################ # Output directory where the model predictions and checkpoints will be stored output_dir = "./results" # Number of training epochs num_train_epochs = 1 # Enable fp16/bf16 training (set bf16 to True with an A100) fp16 = True bf16 = False # Batch size per GPU for training per_device_train_batch_size = int(os.getenv("TRAIN_BATCH_SIZE", "1")) # Batch size per GPU for evaluation per_device_eval_batch_size = int(os.getenv("EVAL_BATCH_SIZE", "2")) # Number of update steps to accumulate the gradients for gradient_accumulation_steps = int(os.getenv("GRADIENT_ACCUMULATION_STEPS", "1")) # Enable gradient checkpointing gradient_checkpointing = True # Maximum gradient normal (gradient clipping) max_grad_norm = 0.3 # Initial learning rate (AdamW optimizer) learning_rate = 2e-4 # Weight decay to apply to all layers except bias/LayerNorm weights weight_decay = 0.001 # Optimizer to use optim = "paged_adamw_32bit" # Learning rate schedule lr_scheduler_type = "cosine" # Number of training steps (overrides num_train_epochs) max_steps = -1 # Ratio of steps for a linear warmup (from 0 to learning rate) warmup_ratio = 0.03 # Group sequences into batches with same length # Saves memory and speeds up training considerably group_by_length = True # Save checkpoint every X updates steps save_steps = 0 # Log every X updates steps logging_steps = int(os.getenv("LOGGING_STEPS", "50")) ################################################################################ # SFT parameters ################################################################################ # Maximum sequence length to use max_seq_length = int(os.getenv("MAX_SEQ_LENGTH", "512")) # Pack multiple short examples in the same input sequence to increase efficiency packing = False # Load the entire model on the GPU 0 device_map = {'':torch.cuda.current_device()} # Set limit to a positive number limit = int(os.getenv("DATASET_LIMIT", "5000")) dataset = load_dataset(dataset_name, split="train") if limit != -1: dataset = dataset.shuffle(seed=42).select(range(limit)) def transform(data): question = data['question'] context = data['context'] answer = data['answer'] template = "Question: {question}\nContext: {context}\nAnswer: {answer}" return {'text': template.format(question=question, context=context, answer=answer)} transformed = dataset.map(transform) # Load tokenizer and model with QLoRA configuration compute_dtype = getattr(torch, bnb_4bit_compute_dtype) bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, ) # Check GPU compatibility with bfloat16 if compute_dtype == torch.float16 and use_4bit: major, _ = torch.cuda.get_device_capability() if major >= 8: print("=" * 80) print("Your GPU supports bfloat16") print("=" * 80) # Load base model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map=device_map, torch_dtype=torch.float16, ) model.config.use_cache = False model.config.pretraining_tp = 1 # Load LLaMA tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" # Load LoRA configuration peft_config = LoraConfig( lora_alpha=lora_alpha, lora_dropout=lora_dropout, r=lora_r, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"] ) # Set training parameters training_arguments = TrainingArguments( output_dir=output_dir, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, optim=optim, save_steps=save_steps, logging_steps=logging_steps, learning_rate=learning_rate, weight_decay=weight_decay, fp16=fp16, bf16=bf16, max_grad_norm=max_grad_norm, max_steps=max_steps, warmup_ratio=warmup_ratio, group_by_length=group_by_length, lr_scheduler_type=lr_scheduler_type, ) trainer = SFTTrainer( model=model, train_dataset=transformed, peft_config=peft_config, dataset_text_field="text", max_seq_length=max_seq_length, tokenizer=tokenizer, args=training_arguments, packing=packing, ) trainer.train() trainer.model.save_pretrained(new_model) # Reload model in FP16 and merge it with LoRA weights base_model = AutoModelForCausalLM.from_pretrained( model_name, low_cpu_mem_usage=True, return_dict=True, torch_dtype=torch.float16, device_map=device_map, ) model = PeftModel.from_pretrained(base_model, new_model) model = model.merge_and_unload() # push to Cloud Storage file_path_to_save_the_model = '/finetune/new_model' model.save_pretrained(file_path_to_save_the_model) tokenizer.save_pretrained(file_path_to_save_the_model)
- 建立
requirements.txt
檔案:accelerate==0.34.2 bitsandbytes==0.45.5 datasets==2.19.1 transformers==4.51.3 peft==0.11.1 trl==0.8.6 torch==2.3.0
- 建立
Dockerfile
:FROM nvidia/cuda:12.6.2-runtime-ubuntu22.04 RUN apt-get update && \ apt-get -y --no-install-recommends install python3-dev gcc python3-pip git && \ rm -rf /var/lib/apt/lists/* COPY requirements.txt /requirements.txt RUN pip3 install -r requirements.txt --no-cache-dir COPY finetune.py /finetune.py ENV PYTHONUNBUFFERED 1 CMD python3 /finetune.py --device cuda
- 在 Artifact Registry 存放區中建構容器:
gcloud builds submit \ --tag $REGION-docker.pkg.dev/$PROJECT_ID/$AR_REPO/$IMAGE_NAME \ --region $REGION
5. 部署及執行工作
在這個步驟中,您將為工作建立 YAML 設定,並使用直接 VPC 出口,以便更快將資料上傳至 Google Cloud Storage。
請注意,這個檔案包含您稍後會更新的變數。
- 建立名為
finetune-job.yaml.tmpl
的檔案:apiVersion: run.googleapis.com/v1 kind: Job metadata: name: $JOB_NAME labels: cloud.googleapis.com/location: $REGION annotations: run.googleapis.com/launch-stage: ALPHA spec: template: metadata: annotations: run.googleapis.com/execution-environment: gen2 run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]' spec: parallelism: 1 taskCount: 1 template: spec: serviceAccountName: $SERVICE_ACCOUNT_ADDRESS containers: - name: $IMAGE_NAME image: $REGION-docker.pkg.dev/$PROJECT_ID/$AR_REPO/$IMAGE_NAME env: - name: MODEL_NAME value: "google/gemma-2b" - name: NEW_MODEL value: "gemma-2b-sql-finetuned" - name: BUCKET_NAME value: "$BUCKET_NAME" - name: LORA_R value: "8" - name: LORA_ALPHA value: "16" - name: GRADIENT_ACCUMULATION_STEPS value: "2" - name: DATASET_LIMIT value: "1000" - name: LOGGING_STEPS value: "5" - name: HF_TOKEN valueFrom: secretKeyRef: key: 'latest' name: HF_TOKEN resources: limits: cpu: 8000m nvidia.com/gpu: '1' memory: 32Gi volumeMounts: - mountPath: /finetune/new_model name: finetuned_model volumes: - name: finetuned_model csi: driver: gcsfuse.run.googleapis.com readOnly: false volumeAttributes: bucketName: $BUCKET_NAME maxRetries: 3 timeoutSeconds: '3600' nodeSelector: run.googleapis.com/accelerator: nvidia-l4
- 執行下列指令,將 YAML 中的變數替換為環境變數:
envsubst < finetune-job.yaml.tmpl > finetune-job.yaml
- 建立 Cloud Run 工作:
gcloud alpha run jobs replace finetune-job.yaml
- 執行工作:
gcloud alpha run jobs execute $JOB_NAME --region $REGION --async
這項作業大約 10 分鐘就能完成。您可以使用上一個指令輸出內容中提供的連結,查看狀態。
6. 使用 Cloud Run 服務,透過 vLLM 提供經過微調的模型
在這個步驟中,您將部署 Cloud Run 服務。這項設定會透過私人網路使用直接虛擬私有雲存取 Cloud Storage 值區,以便加快下載速度。
請注意,這個檔案包含您稍後會更新的變數。
- 建立
service.yaml.tmpl
檔案:apiVersion: serving.knative.dev/v1 kind: Service metadata: name: serve-gemma-sql labels: cloud.googleapis.com/location: $REGION annotations: run.googleapis.com/launch-stage: BETA run.googleapis.com/ingress: all run.googleapis.com/ingress-status: all spec: template: metadata: labels: annotations: autoscaling.knative.dev/maxScale: '1' run.googleapis.com/cpu-throttling: 'false' run.googleapis.com/gpu-zonal-redundancy-disabled: 'true' run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]' spec: containers: - name: serve-finetuned image: us-docker.pkg.dev/vertex-ai/vertex-vision-model-garden-dockers/pytorch-vllm-serve:20250505_0916_RC00 ports: - name: http1 containerPort: 8000 resources: limits: cpu: 8000m nvidia.com/gpu: '1' memory: 32Gi volumeMounts: - name: fuse mountPath: /finetune/new_model command: ["python3", "-m", "vllm.entrypoints.api_server"] args: - --model=/finetune/new_model - --tensor-parallel-size=1 env: - name: MODEL_ID value: 'new_model' - name: HF_HUB_OFFLINE value: '1' volumes: - name: fuse csi: driver: gcsfuse.run.googleapis.com volumeAttributes: bucketName: $BUCKET_NAME nodeSelector: run.googleapis.com/accelerator: nvidia-l4
- 使用值區名稱更新
service.yaml
檔案。envsubst < service.yaml.tmpl > service.yaml
- 部署 Cloud Run 服務:
gcloud alpha run services replace service.yaml
7. 測試微調後的模型
在這個步驟中,您會提示模型測試精細調整。
- 取得 Cloud Run 服務的服務網址:
SERVICE_URL=$(gcloud run services describe serve-gemma-sql --platform managed --region $REGION --format 'value(status.url)')
- 為模型建立提示。
USER_PROMPT="Question: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)"
- 使用 CURL 呼叫服務,以便提示模型:
curl -X POST $SERVICE_URL/generate \ -H "Content-Type: application/json" \ -H "Authorization: bearer $(gcloud auth print-identity-token)" \ -d @- <<EOF { "prompt": "${USER_PROMPT}" } EOF
畫面會顯示類似以下的回應:
{"predictions":["Prompt:\nQuestion: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)\nOutput:\n CREATE TABLE people_to_candidates (candidate_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people (person_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people_to_candidates (person_id VARCHAR, candidate_id"]}
8. 恭喜!
恭喜您完成程式碼研究室!
建議您參閱 Cloud Run 說明文件。
涵蓋內容
- 如何使用 Cloud Run 工作 GPU 進行精細調整
- 如何搭配 vLLM 使用 Cloud Run 提供模型
- 如何為 GPU 工作使用直接虛擬私有雲設定,以便加快模型上傳及服務的速度
9. 清理
為避免產生意外費用,如果 Cloud Run 服務不小心叫用次數超過 免付費層級的 Cloud Run 叫用次數配額,您可以刪除在步驟 6 中建立的 Cloud Run 服務。
如要刪除 Cloud Run 服務,請前往 Cloud Run 控制台 (https://console.cloud.google.com/run) 並刪除 serve-gemma-sql
服務。
如要刪除整個專案,請前往「Manage Resources」,選取您在步驟 2 中建立的專案,然後選擇「Delete」(刪除)。如果您刪除專案,就必須在 Cloud SDK 中變更專案。您可以執行 gcloud projects list
來查看所有可用專案的清單。