1. 總覽
Video Intelligence API 可讓您在應用程式中使用 Google 影片分析技術。
在本研究室中,您將專注於如何搭配 Python 使用 Video Intelligence API。
課程內容
- 如何設定環境
- 如何設定 Python
- 如何偵測鏡頭轉換
- 如何偵測標籤
- 如何偵測煽情露骨內容
- 如何轉錄語音
- 如何偵測及追蹤文字
- 如何偵測及追蹤物件
- 如何偵測及追蹤標誌
軟硬體需求
問卷調查
您會如何使用這個教學課程?
您對 Python 的使用體驗有何評價?
針對使用 Google Cloud 服務的經驗,您會給予什麼評價?
2. 設定和需求
自修環境設定
- 登入 Google Cloud 控制台,建立新專案或重複使用現有專案。如果您還沒有 Gmail 或 Google Workspace 帳戶,請先建立帳戶。
- 「專案名稱」是這項專案參與者的顯示名稱。這是 Google API 未使用的字元字串。您可以隨時更新付款方式。
- 所有 Google Cloud 專案的專案 ID 均不得重複,而且設定後即無法變更。Cloud 控制台會自動產生一個不重複的字串。但通常是在乎它何在在大部分的程式碼研究室中,您必須參照專案 ID (通常為
PROJECT_ID
)。如果您對產生的 ID 不滿意,可以隨機產生一個 ID。或者,您也可以自行嘗試,看看是否支援。在這個步驟後,這個名稱即無法變更,而且在專案期間內仍會保持有效。 - 資訊中的第三個值是專案編號,部分 API 會使用這個編號。如要進一步瞭解這三個值,請參閱說明文件。
- 接下來,您需要在 Cloud 控制台中啟用計費功能,才能使用 Cloud 資源/API。執行本程式碼研究室不會產生任何費用 (如果有的話)。如要關閉資源,以免產生本教學課程結束後產生的費用,您可以刪除自己建立的資源或刪除專案。新使用者符合 $300 美元免費試用計畫的資格。
啟動 Cloud Shell
雖然 Google Cloud 可以從筆記型電腦遠端操作,但在本程式碼研究室中,您將使用 Cloud Shell,這是一種在 Cloud 中執行的指令列環境。
啟用 Cloud Shell
- 在 Cloud 控制台中,按一下「啟用 Cloud Shell」圖示 。
如果您是第一次啟動 Cloud Shell,系統會顯示中繼畫面,說明這項服務的內容。如果系統顯示中繼畫面,請按一下「繼續」。
佈建並連線至 Cloud Shell 只需幾分鐘的時間。
這個虛擬機器已載入所有必要的開發工具。提供永久的 5 GB 主目錄,而且在 Google Cloud 中運作,大幅提高網路效能和驗證能力。在本程式碼研究室中,您的大部分作業都可透過瀏覽器完成。
連線至 Cloud Shell 後,您應會發現自己通過驗證,且專案已設為您的專案 ID。
- 在 Cloud Shell 中執行下列指令,確認您已通過驗證:
gcloud auth list
指令輸出
Credentialed Accounts ACTIVE ACCOUNT * <my_account>@<my_domain.com> To set the active account, run: $ gcloud config set account `ACCOUNT`
- 在 Cloud Shell 中執行下列指令,確認 gcloud 指令知道您的專案:
gcloud config list project
指令輸出
[core] project = <PROJECT_ID>
如果尚未設定,請使用下列指令進行設定:
gcloud config set project <PROJECT_ID>
指令輸出
Updated property [core/project].
3. 環境設定
開始使用 Video Intelligence API 之前,請先在 Cloud Shell 中執行下列指令來啟用 API:
gcloud services enable videointelligence.googleapis.com
畫面應如下所示:
Operation "operations/..." finished successfully.
現在您可以使用 Video Intelligence API 了!
前往主目錄:
cd ~
建立 Python 虛擬環境來區隔依附元件:
virtualenv venv-videointel
啟用虛擬環境:
source venv-videointel/bin/activate
安裝 IPython 和 Video Intelligence API 用戶端程式庫:
pip install ipython google-cloud-videointelligence
畫面應如下所示:
... Installing collected packages: ..., ipython, google-cloud-videointelligence Successfully installed ... google-cloud-videointelligence-2.11.0 ...
現在您可以開始使用 Video Intelligence API 用戶端程式庫了!
在後續步驟中,您將使用名為 IPython 的互動式 Python 解譯器,此語言是在之前的步驟中安裝。在 Cloud Shell 中執行 ipython
即可啟動工作階段:
ipython
畫面應如下所示:
Python 3.9.2 (default, Feb 28 2021, 17:03:44) Type 'copyright', 'credits' or 'license' for more information IPython 8.12.0 -- An enhanced Interactive Python. Type '?' for help. In [1]:
4. 影片樣本
您可以使用 Video Intelligence API 為儲存在 Cloud Storage 的影片或以資料位元組形式提供的影片加上註解。
在後續步驟中,您將使用儲存在 Cloud Storage 中的影片範例。您可以在瀏覽器中觀看影片。
準備好了嗎?
5. 偵測鏡頭轉換
你可以使用 Video Intelligence API 偵測影片中的鏡頭轉換。鏡頭是影片片段,為一系列連貫視覺連續性的畫面。
將下列程式碼複製到您的 IPython 工作階段:
from typing import cast
from google.cloud import videointelligence_v1 as vi
def detect_shot_changes(video_uri: str) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.SHOT_CHANGE_DETECTION]
request = vi.AnnotateVideoRequest(input_uri=video_uri, features=features)
print(f'Processing video: "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
請花點時間研究此程式碼,瞭解程式碼如何使用 annotate_video
用戶端程式庫方法搭配 SHOT_CHANGE_DETECTION
參數,藉此分析影片並偵測鏡頭變換。
呼叫函式即可分析影片:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
results = detect_shot_changes(video_uri)
等待影片處理完畢:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
加入這個函式即可輸出影片畫面:
def print_video_shots(results: vi.VideoAnnotationResults):
shots = results.shot_annotations
print(f" Video shots: {len(shots)} ".center(40, "-"))
for i, shot in enumerate(shots):
t1 = shot.start_time_offset.total_seconds()
t2 = shot.end_time_offset.total_seconds()
print(f"{i+1:>3} | {t1:7.3f} | {t2:7.3f}")
呼叫函式:
print_video_shots(results)
畫面應如下所示:
----------- Video shots: 34 ------------ 1 | 0.000 | 12.880 2 | 12.920 | 21.680 3 | 21.720 | 27.880 ... 32 | 135.160 | 138.320 33 | 138.360 | 146.200 34 | 146.240 | 162.520
如果擷取每個鏡頭的中間畫面,並將其放在影格牆上,則可為影片生成視覺摘要:
摘要
在這個步驟中,您可以使用 Video Intelligence API 對影片執行鏡頭轉換偵測。進一步瞭解如何偵測鏡頭轉換。
6. 偵測標籤
你可以使用 Video Intelligence API 來偵測影片中的標籤。標籤會根據影像內容描述影片內容,
將下列程式碼複製到您的 IPython 工作階段:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_labels(
video_uri: str,
mode: vi.LabelDetectionMode,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.LABEL_DETECTION]
config = vi.LabelDetectionConfig(label_detection_mode=mode)
context = vi.VideoContext(segments=segments, label_detection_config=config)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
請花點時間研究此程式碼,瞭解程式碼如何使用 annotate_video
用戶端程式庫方法搭配 LABEL_DETECTION
參數,分析影片並偵測標籤。
呼叫函式來分析影片前 37 秒:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
mode = vi.LabelDetectionMode.SHOT_MODE
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=0),
end_time_offset=timedelta(seconds=37),
)
results = detect_labels(video_uri, mode, [segment])
等待影片處理完畢:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
加入這個函式即可輸出影片層級的標籤:
def print_video_labels(results: vi.VideoAnnotationResults):
labels = sorted_by_first_segment_confidence(results.segment_label_annotations)
print(f" Video labels: {len(labels)} ".center(80, "-"))
for label in labels:
categories = category_entities_to_str(label.category_entities)
for segment in label.segments:
confidence = segment.confidence
t1 = segment.segment.start_time_offset.total_seconds()
t2 = segment.segment.end_time_offset.total_seconds()
print(
f"{confidence:4.0%}",
f"{t1:7.3f}",
f"{t2:7.3f}",
f"{label.entity.description}{categories}",
sep=" | ",
)
def sorted_by_first_segment_confidence(
labels: Sequence[vi.LabelAnnotation],
) -> Sequence[vi.LabelAnnotation]:
def first_segment_confidence(label: vi.LabelAnnotation) -> float:
return label.segments[0].confidence
return sorted(labels, key=first_segment_confidence, reverse=True)
def category_entities_to_str(category_entities: Sequence[vi.Entity]) -> str:
if not category_entities:
return ""
entities = ", ".join([e.description for e in category_entities])
return f" ({entities})"
呼叫函式:
print_video_labels(results)
畫面應如下所示:
------------------------------- Video labels: 10 ------------------------------- 96% | 0.000 | 36.960 | nature 74% | 0.000 | 36.960 | vegetation 59% | 0.000 | 36.960 | tree (plant) 56% | 0.000 | 36.960 | forest (geographical feature) 49% | 0.000 | 36.960 | leaf (plant) 43% | 0.000 | 36.960 | flora (plant) 38% | 0.000 | 36.960 | nature reserve (geographical feature) 38% | 0.000 | 36.960 | woodland (forest) 35% | 0.000 | 36.960 | water resources (water) 32% | 0.000 | 36.960 | sunlight (light)
有了這些影片層級標籤,你就能得知影片開頭主要是關於自然和植被。
加入這個函式以輸出鏡頭層級的標籤:
def print_shot_labels(results: vi.VideoAnnotationResults):
labels = sorted_by_first_segment_start_and_confidence(
results.shot_label_annotations
)
print(f" Shot labels: {len(labels)} ".center(80, "-"))
for label in labels:
categories = category_entities_to_str(label.category_entities)
print(f"{label.entity.description}{categories}")
for segment in label.segments:
confidence = segment.confidence
t1 = segment.segment.start_time_offset.total_seconds()
t2 = segment.segment.end_time_offset.total_seconds()
print(f"{confidence:4.0%} | {t1:7.3f} | {t2:7.3f}")
def sorted_by_first_segment_start_and_confidence(
labels: Sequence[vi.LabelAnnotation],
) -> Sequence[vi.LabelAnnotation]:
def first_segment_start_and_confidence(label: vi.LabelAnnotation):
first_segment = label.segments[0]
ms = first_segment.segment.start_time_offset.total_seconds()
return (ms, -first_segment.confidence)
return sorted(labels, key=first_segment_start_and_confidence)
呼叫函式:
print_shot_labels(results)
畫面應如下所示:
------------------------------- Shot labels: 29 -------------------------------- planet (astronomical object) 83% | 0.000 | 12.880 earth (planet) 53% | 0.000 | 12.880 water resources (water) 43% | 0.000 | 12.880 aerial photography (photography) 43% | 0.000 | 12.880 vegetation 32% | 0.000 | 12.880 92% | 12.920 | 21.680 83% | 21.720 | 27.880 77% | 27.920 | 31.800 76% | 31.840 | 34.720 ... butterfly (insect, animal) 84% | 34.760 | 36.960 ...
透過這些鏡頭層級標籤,你可以知道影片是從行星拍攝的 (可能為地球) 開始,34.760-36.960s
鏡頭中有蝴蝶...
摘要
在這個步驟中,您可以使用 Video Intelligence API 對影片執行標籤偵測。進一步瞭解如何偵測標籤。
7. 偵測煽情露骨內容
您可以使用 Video Intelligence API 來偵測影片中的煽情露骨內容。煽情露骨內容是通常不適合 18 歲以下族群的成人內容,包括但不限於裸露、性活動和色情內容。僅根據每個影格的視覺信號進行偵測 (不會使用音訊)。回應中會包含介於 VERY_UNLIKELY
到 VERY_LIKELY
的可能性值。
將下列程式碼複製到您的 IPython 工作階段:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_explicit_content(
video_uri: str,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.EXPLICIT_CONTENT_DETECTION]
context = vi.VideoContext(segments=segments)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
請花點時間研究此程式碼,瞭解它如何搭配 EXPLICIT_CONTENT_DETECTION
參數使用 annotate_video
用戶端程式庫方法,以分析影片及偵測煽情露骨內容。
呼叫函式來分析影片前 10 秒:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=0),
end_time_offset=timedelta(seconds=10),
)
results = detect_explicit_content(video_uri, [segment])
等待影片處理完畢:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
新增此函式以輸出不同的可能次數計數:
def print_explicit_content(results: vi.VideoAnnotationResults):
from collections import Counter
frames = results.explicit_annotation.frames
likelihood_counts = Counter([f.pornography_likelihood for f in frames])
print(f" Explicit content frames: {len(frames)} ".center(40, "-"))
for likelihood in vi.Likelihood:
print(f"{likelihood.name:<22}: {likelihood_counts[likelihood]:>3}")
呼叫函式:
print_explicit_content(results)
畫面應如下所示:
----- Explicit content frames: 10 ------ LIKELIHOOD_UNSPECIFIED: 0 VERY_UNLIKELY : 10 UNLIKELY : 0 POSSIBLE : 0 LIKELY : 0 VERY_LIKELY : 0
加入這個函式即可輸出影格詳細資料:
def print_frames(results: vi.VideoAnnotationResults, likelihood: vi.Likelihood):
frames = results.explicit_annotation.frames
frames = [f for f in frames if f.pornography_likelihood == likelihood]
print(f" {likelihood.name} frames: {len(frames)} ".center(40, "-"))
for frame in frames:
print(frame.time_offset)
呼叫函式:
print_frames(results, vi.Likelihood.VERY_UNLIKELY)
畫面應如下所示:
------- VERY_UNLIKELY frames: 10 ------- 0:00:00.365992 0:00:01.279206 0:00:02.268336 0:00:03.289253 0:00:04.400163 0:00:05.291547 0:00:06.449558 0:00:07.452751 0:00:08.577405 0:00:09.554514
摘要
在這個步驟中,您將能使用 Video Intelligence API 對影片執行煽情露骨內容偵測。如要進一步瞭解如何偵測煽情露骨內容,請參閱這篇文章。
8. 轉錄語音
您可以使用 Video Intelligence API 將影片語音轉錄為文字。
將下列程式碼複製到您的 IPython 工作階段:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def transcribe_speech(
video_uri: str,
language_code: str,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.SPEECH_TRANSCRIPTION]
config = vi.SpeechTranscriptionConfig(
language_code=language_code,
enable_automatic_punctuation=True,
)
context = vi.VideoContext(
segments=segments,
speech_transcription_config=config,
)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
請花點時間研究此程式碼,瞭解它如何使用 annotate_video
用戶端程式庫方法搭配 SPEECH_TRANSCRIPTION
參數,藉此分析影片及轉錄語音。
呼叫函式,分析影片從 55 到 80 秒之間的影片:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
language_code = "en-GB"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=55),
end_time_offset=timedelta(seconds=80),
)
results = transcribe_speech(video_uri, language_code, [segment])
等待影片處理完畢:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
新增這個函式來輸出轉錄的語音:
def print_video_speech(results: vi.VideoAnnotationResults, min_confidence: float = 0.8):
def keep_transcription(transcription: vi.SpeechTranscription) -> bool:
return min_confidence <= transcription.alternatives[0].confidence
transcriptions = results.speech_transcriptions
transcriptions = [t for t in transcriptions if keep_transcription(t)]
print(f" Speech transcriptions: {len(transcriptions)} ".center(80, "-"))
for transcription in transcriptions:
first_alternative = transcription.alternatives[0]
confidence = first_alternative.confidence
transcript = first_alternative.transcript
print(f" {confidence:4.0%} | {transcript.strip()}")
呼叫函式:
print_video_speech(results)
畫面應如下所示:
--------------------------- Speech transcriptions: 2 --------------------------- 91% | I was keenly aware of secret movements in the trees. 92% | I looked into his large and lustrous eyes. They seem somehow to express his entire personality.
加入這個函式即可輸出偵測到的字詞清單及其時間戳記:
def print_word_timestamps(
results: vi.VideoAnnotationResults,
min_confidence: float = 0.8,
):
def keep_transcription(transcription: vi.SpeechTranscription) -> bool:
return min_confidence <= transcription.alternatives[0].confidence
transcriptions = results.speech_transcriptions
transcriptions = [t for t in transcriptions if keep_transcription(t)]
print(" Word timestamps ".center(80, "-"))
for transcription in transcriptions:
first_alternative = transcription.alternatives[0]
confidence = first_alternative.confidence
for word in first_alternative.words:
t1 = word.start_time.total_seconds()
t2 = word.end_time.total_seconds()
word = word.word
print(f"{confidence:4.0%} | {t1:7.3f} | {t2:7.3f} | {word}")
呼叫函式:
print_word_timestamps(results)
畫面應如下所示:
------------------------------- Word timestamps -------------------------------- 93% | 55.000 | 55.700 | I 93% | 55.700 | 55.900 | was 93% | 55.900 | 56.300 | keenly 93% | 56.300 | 56.700 | aware 93% | 56.700 | 56.900 | of ... 94% | 76.900 | 77.400 | express 94% | 77.400 | 77.600 | his 94% | 77.600 | 78.200 | entire 94% | 78.200 | 78.500 | personality.
摘要
在這個步驟中,您可以使用 Video Intelligence API 對影片執行語音轉錄。如要進一步瞭解如何轉錄音訊,請參閱這篇文章。
9. 偵測並追蹤文字
你可以使用 Video Intelligence API 偵測及追蹤影片中的文字。
將下列程式碼複製到您的 IPython 工作階段:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_text(
video_uri: str,
language_hints: Optional[Sequence[str]] = None,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.TEXT_DETECTION]
config = vi.TextDetectionConfig(
language_hints=language_hints,
)
context = vi.VideoContext(
segments=segments,
text_detection_config=config,
)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
請花點時間研究此程式碼,瞭解它如何使用 annotate_video
用戶端程式庫方法搭配 TEXT_DETECTION
參數,藉此分析影片並偵測文字。
呼叫函式來分析從 13 到 27 秒之間的影片:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=13),
end_time_offset=timedelta(seconds=27),
)
results = detect_text(video_uri, segments=[segment])
等待影片處理完畢:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
加入這個函式來輸出偵測到的文字:
def print_video_text(results: vi.VideoAnnotationResults, min_frames: int = 15):
annotations = sorted_by_first_segment_end(results.text_annotations)
print(" Detected text ".center(80, "-"))
for annotation in annotations:
for text_segment in annotation.segments:
frames = len(text_segment.frames)
if frames < min_frames:
continue
text = annotation.text
confidence = text_segment.confidence
start = text_segment.segment.start_time_offset
seconds = segment_seconds(text_segment.segment)
print(text)
print(f" {confidence:4.0%} | {start} + {seconds:.1f}s | {frames} fr.")
def sorted_by_first_segment_end(
annotations: Sequence[vi.TextAnnotation],
) -> Sequence[vi.TextAnnotation]:
def first_segment_end(annotation: vi.TextAnnotation) -> int:
return annotation.segments[0].segment.end_time_offset.total_seconds()
return sorted(annotations, key=first_segment_end)
def segment_seconds(segment: vi.VideoSegment) -> float:
t1 = segment.start_time_offset.total_seconds()
t2 = segment.end_time_offset.total_seconds()
return t2 - t1
呼叫函式:
print_video_text(results)
畫面應如下所示:
-------------------------------- Detected text --------------------------------- GOMBE NATIONAL PARK 99% | 0:00:15.760000 + 1.7s | 15 fr. TANZANIA 100% | 0:00:15.760000 + 4.8s | 39 fr. With words and narration by 100% | 0:00:23.200000 + 3.6s | 31 fr. Jane Goodall 99% | 0:00:23.080000 + 3.8s | 33 fr.
加入這個函式即可輸出偵測到的文字外框和定界框清單:
def print_text_frames(results: vi.VideoAnnotationResults, contained_text: str):
# Vertex order: top-left, top-right, bottom-right, bottom-left
def box_top_left(box: vi.NormalizedBoundingPoly) -> str:
tl = box.vertices[0]
return f"({tl.x:.5f}, {tl.y:.5f})"
def box_bottom_right(box: vi.NormalizedBoundingPoly) -> str:
br = box.vertices[2]
return f"({br.x:.5f}, {br.y:.5f})"
annotations = results.text_annotations
annotations = [a for a in annotations if contained_text in a.text]
for annotation in annotations:
print(f" {annotation.text} ".center(80, "-"))
for text_segment in annotation.segments:
for frame in text_segment.frames:
frame_ms = frame.time_offset.total_seconds()
box = frame.rotated_bounding_box
print(
f"{frame_ms:>7.3f}",
box_top_left(box),
box_bottom_right(box),
sep=" | ",
)
呼叫函式,查看哪些頁框會顯示講述者名稱:
contained_text = "Goodall"
print_text_frames(results, contained_text)
畫面應如下所示:
--------------------------------- Jane Goodall --------------------------------- 23.080 | (0.39922, 0.49861) | (0.62752, 0.55888) 23.200 | (0.38750, 0.49028) | (0.62692, 0.56306) ... 26.800 | (0.36016, 0.49583) | (0.61094, 0.56048) 26.920 | (0.45859, 0.49583) | (0.60365, 0.56174)
如果您在對應的頁框上方繪製定界框,就會得到以下結果:
摘要
在這個步驟中,您可以使用 Video Intelligence API 對影片執行文字偵測和追蹤。如要進一步瞭解如何偵測及追蹤文字,請參閱本文。
10. 偵測及追蹤物件
你可以使用 Video Intelligence API 偵測及追蹤影片中的物件。
將下列程式碼複製到您的 IPython 工作階段:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def track_objects(
video_uri: str, segments: Optional[Sequence[vi.VideoSegment]] = None
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.OBJECT_TRACKING]
context = vi.VideoContext(segments=segments)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
請花點時間研究此程式碼,瞭解它如何使用 annotate_video
用戶端程式庫方法搭配 OBJECT_TRACKING
參數,藉此分析影片和偵測物件。
呼叫函式來分析從 98 到 112 秒的影片:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=98),
end_time_offset=timedelta(seconds=112),
)
results = track_objects(video_uri, [segment])
等待影片處理完畢:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
加入這個函式即可輸出偵測到的物件清單:
def print_detected_objects(
results: vi.VideoAnnotationResults,
min_confidence: float = 0.7,
):
annotations = results.object_annotations
annotations = [a for a in annotations if min_confidence <= a.confidence]
print(
f" Detected objects: {len(annotations)}"
f" ({min_confidence:.0%} <= confidence) ".center(80, "-")
)
for annotation in annotations:
entity = annotation.entity
description = entity.description
entity_id = entity.entity_id
confidence = annotation.confidence
t1 = annotation.segment.start_time_offset.total_seconds()
t2 = annotation.segment.end_time_offset.total_seconds()
frames = len(annotation.frames)
print(
f"{description:<22}",
f"{entity_id:<10}",
f"{confidence:4.0%}",
f"{t1:>7.3f}",
f"{t2:>7.3f}",
f"{frames:>2} fr.",
sep=" | ",
)
呼叫函式:
print_detected_objects(results)
畫面應如下所示:
------------------- Detected objects: 3 (70% <= confidence) -------------------- insect | /m/03vt0 | 87% | 98.840 | 101.720 | 25 fr. insect | /m/03vt0 | 71% | 108.440 | 111.080 | 23 fr. butterfly | /m/0cyf8 | 91% | 111.200 | 111.920 | 7 fr.
加入這個函式,即可輸出偵測到的物件框架和定界框清單:
def print_object_frames(
results: vi.VideoAnnotationResults,
entity_id: str,
min_confidence: float = 0.7,
):
def keep_annotation(annotation: vi.ObjectTrackingAnnotation) -> bool:
return (
annotation.entity.entity_id == entity_id
and min_confidence <= annotation.confidence
)
annotations = results.object_annotations
annotations = [a for a in annotations if keep_annotation(a)]
for annotation in annotations:
description = annotation.entity.description
confidence = annotation.confidence
print(
f" {description},"
f" confidence: {confidence:.0%},"
f" frames: {len(annotation.frames)} ".center(80, "-")
)
for frame in annotation.frames:
t = frame.time_offset.total_seconds()
box = frame.normalized_bounding_box
print(
f"{t:>7.3f}",
f"({box.left:.5f}, {box.top:.5f})",
f"({box.right:.5f}, {box.bottom:.5f})",
sep=" | ",
)
使用用於昆蟲的實體 ID 呼叫函式:
insect_entity_id = "/m/03vt0"
print_object_frames(results, insect_entity_id)
畫面應如下所示:
--------------------- insect, confidence: 87%, frames: 25 ---------------------- 98.840 | (0.49327, 0.19617) | (0.69905, 0.69633) 98.960 | (0.49559, 0.19308) | (0.70631, 0.69671) ... 101.600 | (0.46668, 0.19776) | (0.76619, 0.69371) 101.720 | (0.46805, 0.20053) | (0.76447, 0.68703) --------------------- insect, confidence: 71%, frames: 23 ---------------------- 108.440 | (0.47343, 0.10694) | (0.63821, 0.98332) 108.560 | (0.46960, 0.10206) | (0.63033, 0.98285) ... 110.960 | (0.49466, 0.05102) | (0.65941, 0.99357) 111.080 | (0.49572, 0.04728) | (0.65762, 0.99868)
如果您在對應的頁框上方繪製定界框,就會得到以下結果:
摘要
在這個步驟中,您可以使用 Video Intelligence API 對影片執行物件偵測和追蹤。如要進一步瞭解如何偵測及追蹤物件,請參閱本文。
11. 偵測及追蹤標誌
你可以使用 Video Intelligence API 偵測及追蹤影片中的標誌。可偵測超過 100,000 個品牌和標誌。
將下列程式碼複製到您的 IPython 工作階段:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_logos(
video_uri: str, segments: Optional[Sequence[vi.VideoSegment]] = None
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.LOGO_RECOGNITION]
context = vi.VideoContext(segments=segments)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
請花點時間研究此程式碼,瞭解程式碼如何使用 annotate_video
用戶端程式庫方法搭配 LOGO_RECOGNITION
參數,藉此分析影片並偵測標誌。
呼叫函式即可分析影片的最終序列:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=146),
end_time_offset=timedelta(seconds=156),
)
results = detect_logos(video_uri, [segment])
等待影片處理完畢:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
加入這個函式以列印偵測到的標誌清單:
def print_detected_logos(results: vi.VideoAnnotationResults):
annotations = results.logo_recognition_annotations
print(f" Detected logos: {len(annotations)} ".center(80, "-"))
for annotation in annotations:
entity = annotation.entity
entity_id = entity.entity_id
description = entity.description
for track in annotation.tracks:
confidence = track.confidence
t1 = track.segment.start_time_offset.total_seconds()
t2 = track.segment.end_time_offset.total_seconds()
logo_frames = len(track.timestamped_objects)
print(
f"{confidence:4.0%}",
f"{t1:>7.3f}",
f"{t2:>7.3f}",
f"{logo_frames:>3} fr.",
f"{entity_id:<15}",
f"{description}",
sep=" | ",
)
呼叫函式:
print_detected_logos(results)
畫面應如下所示:
------------------------------ Detected logos: 1 ------------------------------- 92% | 150.680 | 155.720 | 43 fr. | /m/055t58 | Google Maps
加入這個函式,即可輸出偵測到的標誌頁框和定界框清單:
def print_logo_frames(results: vi.VideoAnnotationResults, entity_id: str):
def keep_annotation(annotation: vi.LogoRecognitionAnnotation) -> bool:
return annotation.entity.entity_id == entity_id
annotations = results.logo_recognition_annotations
annotations = [a for a in annotations if keep_annotation(a)]
for annotation in annotations:
description = annotation.entity.description
for track in annotation.tracks:
confidence = track.confidence
print(
f" {description},"
f" confidence: {confidence:.0%},"
f" frames: {len(track.timestamped_objects)} ".center(80, "-")
)
for timestamped_object in track.timestamped_objects:
t = timestamped_object.time_offset.total_seconds()
box = timestamped_object.normalized_bounding_box
print(
f"{t:>7.3f}",
f"({box.left:.5f}, {box.top:.5f})",
f"({box.right:.5f}, {box.bottom:.5f})",
sep=" | ",
)
使用 Google 地圖標誌實體 ID 呼叫函式:
maps_entity_id = "/m/055t58"
print_logo_frames(results, maps_entity_id)
畫面應如下所示:
------------------- Google Maps, confidence: 92%, frames: 43 ------------------- 150.680 | (0.42024, 0.28633) | (0.58192, 0.64220) 150.800 | (0.41713, 0.27822) | (0.58318, 0.63556) ... 155.600 | (0.41775, 0.27701) | (0.58372, 0.63986) 155.720 | (0.41688, 0.28005) | (0.58335, 0.63954)
如果您在對應的頁框上方繪製定界框,就會得到以下結果:
摘要
在這個步驟中,您可以使用 Video Intelligence API 偵測影片標誌及追蹤影片。如要進一步瞭解如何偵測及追蹤標誌,請參閱本文。
12. 偵測多個功能
您可以提出下列要求,一次取得所有洞察資料:
from google.cloud import videointelligence_v1 as vi
video_client = vi.VideoIntelligenceServiceClient()
video_uri = "gs://..."
features = [
vi.Feature.SHOT_CHANGE_DETECTION,
vi.Feature.LABEL_DETECTION,
vi.Feature.EXPLICIT_CONTENT_DETECTION,
vi.Feature.SPEECH_TRANSCRIPTION,
vi.Feature.TEXT_DETECTION,
vi.Feature.OBJECT_TRACKING,
vi.Feature.LOGO_RECOGNITION,
vi.Feature.FACE_DETECTION, # NEW
vi.Feature.PERSON_DETECTION, # NEW
]
context = vi.VideoContext(
segments=...,
shot_change_detection_config=...,
label_detection_config=...,
explicit_content_detection_config=...,
speech_transcription_config=...,
text_detection_config=...,
object_tracking_config=...,
face_detection_config=..., # NEW
person_detection_config=..., # NEW
)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
# video_client.annotate_video(request)
13. 恭喜!
您已學會如何透過 Python 使用 Video Intelligence API!
清除所用資源
如要清除開發環境,請透過 Cloud Shell 執行下列操作:
- 如果您目前仍在 IPython 工作階段,請返回殼層:
exit
- 停止使用 Python 虛擬環境:
deactivate
- 刪除虛擬環境資料夾:
cd ~ ; rm -rf ./venv-videointel
如要刪除 Google Cloud 專案,請透過 Cloud Shell 進行:
- 擷取目前的專案 ID:
PROJECT_ID=$(gcloud config get-value core/project)
- 請確認這是要刪除的專案:
echo $PROJECT_ID
- 刪除專案:
gcloud projects delete $PROJECT_ID
瞭解詳情
- 在瀏覽器中測試示範內容:https://zackakil.github.io/video-intelligence-api-visualiser
- Video Intelligence 說明文件:https://cloud.google.com/video-intelligence/docs
- Beta 版功能:https://cloud.google.com/video-intelligence/docs/beta
- 在 Google Cloud 中使用 Python:https://cloud.google.com/python
- Python 適用的 Cloud 用戶端程式庫:https://github.com/googleapis/google-cloud-python
授權
這項內容採用的是創用 CC 姓名標示 2.0 通用授權。