1. Introdução
Visão geral
O Cloud Run adicionou recentemente suporte a GPU. Ele está disponível como uma prévia pública em lista de espera. Se você quiser testar o recurso, preencha este formulário para entrar na lista de espera. O Cloud Run é uma plataforma de contêineres no Google Cloud que facilita a execução do código em um contêiner, sem a necessidade de gerenciar um cluster.
Atualmente, as GPUs disponíveis são as Nvidia L4 com 24 GB de vRAM. Há uma GPU por instância do Cloud Run, e o escalonamento automático do Cloud Run ainda é aplicado. Isso inclui o escalonamento horizontal de até cinco instâncias (com aumento de cota disponível) e o escalonamento vertical para zero instâncias quando não há solicitações.
O Transformers.js foi projetado para ser funcionalmente equivalente à biblioteca de transformadores Python do Hugging Face, o que significa que você pode executar os mesmos modelos pré-treinados usando uma API muito semelhante. Saiba mais no site do Transformers.js.
Neste codelab, você vai criar e implantar um app no Cloud Run que usa o Transformers.js e GPUs.
O que você vai aprender
- Como executar um app usando o Transformers.js no Cloud Run com GPUs
2. Ativar APIs e definir variáveis de ambiente
Antes de começar a usar este codelab, você precisa ativar várias APIs. Este codelab exige o uso das seguintes APIs. Para ativar essas APIs, execute o seguinte comando:
gcloud services enable run.googleapis.com \ storage.googleapis.com \ cloudbuild.googleapis.com \
Em seguida, você pode definir as variáveis de ambiente que serão usadas neste codelab.
PROJECT_ID=<YOUR_PROJECT_ID> AR_REPO_NAME=repo REGION=us-central1
3. Criar o app Transformers.js
Primeiro, crie um diretório para o código-fonte e entre nele.
mkdir transformers-js-codelab && cd $_
Crie um arquivo package.json
.
{ "name": "huggingface", "version": "1.0.0", "main": "index.js", "type": "module", "scripts": { "test": "echo \"Error: no test specified\" && exit 1" }, "keywords": [], "author": "", "license": "ISC", "description": "", "dependencies": { "@huggingface/transformers": "^3.0.0-alpha.8", "@xenova/transformers": "^2.17.2", "express": "^4.17.1" } }
Crie um arquivo chamado index.js
.
import { pipeline } from "@xenova/transformers";
import express from 'express';
// make sure the text-generation pipeline is created first
// before anyone can access the routes
const generator = await pipeline('text-generation', 'Xenova/llama2.c-stories15M', {
device: 'cuda',
dtype: 'fp32',
});
// now create the app and routes
const app = express();
app.get('/', async (req, res) => {
const text = 'A long time ago in a galaxy far far away,';
const output = await generator(text, { max_new_tokens: 50 });
res.send(output);
});
const port = parseInt(process.env.PORT) || 8080;
app.listen(port, () => {
console.log(`transformers-js app: listening on port ${port}`);
});
Crie um Dockerfile
. O dockerfile vai instalar outros drivers NVIDIA necessários para o Transformers.js.
FROM node:20 WORKDIR /usr/src/app RUN apt-get update && \ apt-get install software-properties-common -y && \ wget https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb && \ dpkg -i cuda-keyring_1.1-1_all.deb && \ add-apt-repository contrib && \ apt-get update && \ apt-get -y install cuda-toolkit-12-6 && \ apt-get -y install cudnn-cuda-12 EXPOSE 8080 COPY package.json . RUN npm install COPY index.js . ENTRYPOINT ["node", "index.js"]
4. Criar e implantar o serviço do Cloud Run
Crie um repositório no Artifact Registry.
gcloud artifacts repositories create $AR_REPO_NAME \ --repository-format docker \ --location us-central1
Envie seu código para o Cloud Build.
IMAGE=us-central1-docker.pkg.dev/$PROJECT_ID/$AR_REPO_NAME/gpu-transformers-js gcloud builds submit --tag $IMAGE
Em seguida, implante no Cloud Run
gcloud beta run deploy transformers-js-codelab \ --image=$IMAGE \ --cpu 8 --memory 32Gi \ --gpu=1 --no-cpu-throttling --gpu-type nvidia-l4 \ --allow-unauthenticated \ --region us-central1 \ --project=$PROJECT_ID \ --max-instances 1
5. Testar o serviço
Para testar o serviço, execute o seguinte:
SERVICE_URL=$(gcloud run services describe transformers-js-codelab --region $REGION --format 'value(status.url)') curl $SERVICE_URL
e você vai ver algo parecido com o seguinte:
[{"generated_text":"A long time ago in a galaxy far far away, there was a beautiful garden. Every day, the little girl would go to the garden and look at the flowers. She loved the garden so much that she would come back every day to visit it.\nOne day, the little girl was walking through"}]
6. Parabéns!
Parabéns por concluir o codelab.
Recomendamos a leitura da documentação sobre GPUs do Cloud Run.
O que aprendemos
- Como executar um app usando o Transformers.js no Cloud Run com GPUs
7. Limpar
Para evitar cobranças acidentais (por exemplo, se os serviços do Cloud Run forem invocados acidentalmente mais vezes do que sua alocação mensal de invocação do Cloud Run no nível sem custo financeiro), exclua o Cloud Run ou o projeto criado na etapa 2.
Para excluir o serviço do Cloud Run, acesse o console do Cloud Run em https://console.cloud.google.com/run e exclua o serviço transformers-js-codelab
.
Se você quiser excluir o projeto inteiro, acesse https://console.cloud.google.com/cloud-resource-manager, selecione o projeto criado na etapa 2 e escolha "Excluir". Se você excluir o projeto, vai precisar mudar os projetos no Cloud SDK. Para conferir a lista de todos os projetos disponíveis, execute gcloud projects list
.