In this Codelab, you will learn how to build a Node.js web server to train and classify baseball pitch types on the server-side using TensorFlow.js, a powerful and flexible machine learning library for JavaScript. You will build a web application to train a model to predict the type of pitch from pitch sensor data, and to invoke prediction from a web client. A fully working version of this Codelab is present in the tfjs-examples GitHub repo.

What you'll learn

So let's get started!

To complete this Codelab, you will need:

  1. A recent version of Chrome or another modern browser.
  2. A text editor and command terminal running locally on your machine.
  3. Knowledge of HTML, CSS, JavaScript, and Chrome DevTools (or your preferred browsers devtools).
  4. A high-level conceptual understanding of neural networks. If you need an introduction or refresher, consider watching this video by 3blue1brown or this video on Deep Learning in Javascript by Ashi Krishnan.

Install Node.js and npm. For supported platforms and dependencies, please see the tfjs-node installation guide.

Create a directory called ./baseball for our Node.js app. Copy the linked package.json and webpack.config.js into this directory to configure the npm package dependencies (including the @tensorflow/tfjs-node npm package). Then run npm install to install the dependencies.

$ cd baseball
$ ls
package.json  webpack.config.js
$ npm install
...
$ ls
node_modules  package.json  package-lock.json  webpack.config.js

Now you are ready to write some code and train a model!

You will use the training and test data as CSV files from the links below. Download and explore the data in these files:

pitch_type_training_data.csv

pitch_type_test_data.csv

Let's look at some sample training data:

vx0,vy0,vz0,ax,ay,az,start_speed,left_handed_pitcher,pitch_code
7.69914900671662,-132.225686405648,-6.58357157666866,-22.5082591074995,28.3119270826735,-16.5850095967027,91.1,0,0
6.68052308575228,-134.215511616881,-6.35565979491619,-19.6602769147989,26.7031848314466,-14.3430602022656,92.4,0,0
2.56546504690782,-135.398673977074,-2.91657310799559,-14.7849950586111,27.8083916890792,-21.5737737390901,93.1,0,0

There are eight input features - describing pitch sensor data:

and one output label:

The goal is to build a model that is able to predict the pitch type given pitch sensor data.

Before creating the model, you need to prepare the training and test data. Create the file pitch_type.js in the baseball/ dir, and copy the following code into it. This code loads training and test data using the tf.data.csv API. It also normalizes the data (which is always recommended) using a min-max normalization scale.

const tf = require('@tensorflow/tfjs');

// util function to normalize a value between a given range.
function normalize(value, min, max) {
  if (min === undefined || max === undefined) {
    return value;
  }
  return (value - min) / (max - min);
}

// data can be loaded from URLs or local file paths when running in Node.js. 
const TRAIN_DATA_PATH =
'https://storage.googleapis.com/mlb-pitch-data/pitch_type_training_data.csv';
const TEST_DATA_PATH =    'https://storage.googleapis.com/mlb-pitch-data/pitch_type_test_data.csv';

// Constants from training data
const VX0_MIN = -18.885;
const VX0_MAX = 18.065;
const VY0_MIN = -152.463;
const VY0_MAX = -86.374;
const VZ0_MIN = -15.5146078412997;
const VZ0_MAX = 9.974;
const AX_MIN = -48.0287647107959;
const AX_MAX = 30.592;
const AY_MIN = 9.397;
const AY_MAX = 49.18;
const AZ_MIN = -49.339;
const AZ_MAX = 2.95522851438373;
const START_SPEED_MIN = 59;
const START_SPEED_MAX = 104.4;

const NUM_PITCH_CLASSES = 7;
const TRAINING_DATA_LENGTH = 7000;
const TEST_DATA_LENGTH = 700;

// Converts a row from the CSV into features and labels.
// Each feature field is normalized within training data constants
const csvTransform =
    ({xs, ys}) => {
      const values = [
        normalize(xs.vx0, VX0_MIN, VX0_MAX),
        normalize(xs.vy0, VY0_MIN, VY0_MAX),
        normalize(xs.vz0, VZ0_MIN, VZ0_MAX), normalize(xs.ax, AX_MIN, AX_MAX),
        normalize(xs.ay, AY_MIN, AY_MAX), normalize(xs.az, AZ_MIN, AZ_MAX),
        normalize(xs.start_speed, START_SPEED_MIN, START_SPEED_MAX),
        xs.left_handed_pitcher
      ];
      return {xs: values, ys: ys.pitch_code};
    }

const trainingData =
    tf.data.csv(TRAIN_DATA_PATH, {columnConfigs: {pitch_code: {isLabel: true}}})
        .map(csvTransform)
        .shuffle(TRAINING_DATA_LENGTH)
        .batch(100);

// Load all training data in one batch to use for evaluation
const trainingValidationData =
    tf.data.csv(TRAIN_DATA_PATH, {columnConfigs: {pitch_code: {isLabel: true}}})
        .map(csvTransform)
        .batch(TRAINING_DATA_LENGTH);

// Load all test data in one batch to use for evaluation
const testValidationData =
    tf.data.csv(TEST_DATA_PATH, {columnConfigs: {pitch_code: {isLabel: true}}})
        .map(csvTransform)
        .batch(TEST_DATA_LENGTH);

Now you are ready to build the model. Use the tf.layers API to connect the inputs (shape of [8] pitch sensor values) to 3 hidden fully-connected layers consisting of ReLU activation units, followed by one softmax output layer consisting of 7 units, each representing one of the output pitch types.

Train the model with the adam optimizer and the sparseCategoricalCrossentroy loss function. For more info on these choices, refer to the training models guide.

Add the following code to the end of pitch_type.js:

const model = tf.sequential();
model.add(tf.layers.dense({units: 250, activation: 'relu', inputShape: [8]}));
model.add(tf.layers.dense({units: 175, activation: 'relu'}));
model.add(tf.layers.dense({units: 150, activation: 'relu'}));
model.add(tf.layers.dense({units: NUM_PITCH_CLASSES, activation: 'softmax'}));

model.compile({
  optimizer: tf.train.adam(),
  loss: 'sparseCategoricalCrossentropy',
  metrics: ['accuracy']
});

Trigger the training from the main server code that you will write later.

To complete the pitch_type.js module, let's write a function to evaluate the validation and test data set, predict a pitch type for a single sample, and compute accuracy metrics. Append this code to the end of pitch_type.js:

// Returns pitch class evaluation percentages for training data 
// with an option to include test data
async function evaluate(useTestData) {
  let results = {};
  await trainingValidationData.forEachAsync(pitchTypeBatch => {
    const values = model.predict(pitchTypeBatch.xs).dataSync();
    const classSize = TRAINING_DATA_LENGTH / NUM_PITCH_CLASSES;
    for (let i = 0; i < NUM_PITCH_CLASSES; i++) {
      results[pitchFromClassNum(i)] = {
        training: calcPitchClassEval(i, classSize, values)
      };
    }
  });

  if (useTestData) {
    await testValidationData.forEachAsync(pitchTypeBatch => {
      const values = model.predict(pitchTypeBatch.xs).dataSync();
      const classSize = TEST_DATA_LENGTH / NUM_PITCH_CLASSES;
      for (let i = 0; i < NUM_PITCH_CLASSES; i++) {
        results[pitchFromClassNum(i)].validation =
            calcPitchClassEval(i, classSize, values);
      }
    });
  }
  return results;
}

async function predictSample(sample) {
  let result = model.predict(tf.tensor(sample, [1,sample.length])).arraySync();
  var maxValue = 0;
  var predictedPitch = 7;
  for (var i = 0; i < NUM_PITCH_CLASSES; i++) {
    if (result[0][i] > maxValue) {
      predictedPitch = i;
    }
  }
  return pitchFromClassNum(predictedPitch);
}

// Determines accuracy evaluation for a given pitch class by index
function calcPitchClassEval(pitchIndex, classSize, values) {
  // Output has 7 different class values for each pitch, offset based on
  // which pitch class (ordered by i)
  let index = (pitchIndex * classSize * NUM_PITCH_CLASSES) + pitchIndex;
  let total = 0;
  for (let i = 0; i < classSize; i++) {
    total += values[index];
    index += NUM_PITCH_CLASSES;
  }
  return total / classSize;
}

// Returns the string value for Baseball pitch labels
function pitchFromClassNum(classNum) {
  switch (classNum) {
    case 0:
      return 'Fastball (2-seam)';
    case 1:
      return 'Fastball (4-seam)';
    case 2:
      return 'Fastball (sinker)';
    case 3:
      return 'Fastball (cutter)';
    case 4:
      return 'Slider';
    case 5:
      return 'Changeup';
    case 6:
      return 'Curveball';
    default:
      return 'Unknown';
  }
}

module.exports = {
  evaluate,
  model,
  pitchFromClassNum,
  predictSample,
  testValidationData,
  trainingData,
  TEST_DATA_LENGTH
}

Write the server code to perform model training and evaluation in a new file called server.js. First, create an HTTP server and open a bidirectional socket connection using the socket.io API. Then execute model training using the model.fitDataset API, and evaluate model accuracy using the pitch_type.evaluate() method you wrote earlier. Train and evaluate for 10 iterations, printing metrics to the console.

Copy the below code to server.js:

require('@tensorflow/tfjs-node');

const http = require('http');
const socketio = require('socket.io');
const pitch_type = require('./pitch_type');

const TIMEOUT_BETWEEN_EPOCHS_MS = 500;
const PORT = 8001;

// util function to sleep for a given ms
function sleep(ms) {
  return new Promise(resolve => setTimeout(resolve, ms));
}

// Main function to start server, perform model training, and emit stats via the socket connection
async function run() {
  const port = process.env.PORT || PORT;
  const server = http.createServer();
  const io = socketio(server);

  server.listen(port, () => {
    console.log(`  > Running socket on port: ${port}`);
  });

  io.on('connection', (socket) => {
    socket.on('predictSample', async (sample) => {
      io.emit('predictResult', await pitch_type.predictSample(sample));
    });
  });

  let numTrainingIterations = 10;
  for (var i = 0; i < numTrainingIterations; i++) {
    console.log(`Training iteration : ${i+1} / ${numTrainingIterations}`);
    await pitch_type.model.fitDataset(pitch_type.trainingData, {epochs: 1});
    console.log('accuracyPerClass', await pitch_type.evaluate(true));
    await sleep(TIMEOUT_BETWEEN_EPOCHS_MS);
  }

  io.emit('trainingComplete', true);
}

run();

At this point, you are ready to run and test the server! You should see something like this, with the server training one epoch in each iteration (you could also use the model.fitDataset API to train multiple epochs with one call). If you encounter any errors at this point, please check your node and npm installation.

$ npm run start-server
...
  > Running socket on port: 8001
Epoch 1 / 1
eta=0.0 ========================================================================================================> 
2432ms 34741us/step - acc=0.429 loss=1.49 

Type Ctrl-C to stop the running server. We will run it again in the next step.

Now that the server is ready, the next step is to write the client code and that runs in the browser. Create a simple page to invoke model prediction on the server and display the result. This uses socket.io for client/server communication.

First, create index.html in the baseball/ folder:

<!doctype html>
<html>
  <head>
    <title>Pitch Training Accuracy</title>
  </head>
  <body>
    <h3 id="waiting-msg">Waiting for server...</h3>
    <p>
    <span style="font-size:16px" id="trainingStatus"></span>
    <p>
    <div id="predictContainer" style="font-size:16px;display:none">
      Sensor data: <span id="predictSample"></span>
      <button style="font-size:18px;padding:5px;margin-right:10px" id="predict-button">Predict Pitch</button><p>
      Predicted Pitch Type: <span style="font-weight:bold" id="predictResult"></span>
    </div>
    <script src="dist/bundle.js"></script>
    <style>
      html,
      body {
        font-family: Roboto, sans-serif;
        color: #5f6368;
      }
      body {
        background-color: rgb(248, 249, 250);
      }
    </style>
  </body>
</html>

Then create a new file client.js in the baseball/ folder with the below code:

import io from 'socket.io-client';
const predictContainer = document.getElementById('predictContainer');
const predictButton = document.getElementById('predict-button');

const socket =
    io('http://localhost:8001',
       {reconnectionDelay: 300, reconnectionDelayMax: 300});

const testSample = [2.668,-114.333,-1.908,4.786,25.707,-45.21,78,0]; // Curveball

predictButton.onclick = () => {
  predictButton.disabled = true;
  socket.emit('predictSample', testSample);
};

// functions to handle socket events
socket.on('connect', () => {
    document.getElementById('waiting-msg').style.display = 'none';
    document.getElementById('trainingStatus').innerHTML = 'Training in Progress';
});

socket.on('trainingComplete', () => {
  document.getElementById('trainingStatus').innerHTML = 'Training Complete';
  document.getElementById('predictSample').innerHTML = '[' + testSample.join(', ') + ']';
  predictContainer.style.display = 'block';
});

socket.on('predictResult', (result) => {
  plotPredictResult(result);
});

socket.on('disconnect', () => {
  document.getElementById('trainingStatus').innerHTML = '';
  predictContainer.style.display = 'none';
  document.getElementById('waiting-msg').style.display = 'block';
});

function plotPredictResult(result) {
  predictButton.disabled = false;
  document.getElementById('predictResult').innerHTML = result;
  console.log(result);
}

The client handles the trainingComplete socket message to display a prediction button. When this button is clicked, the client sends a socket message with sample sensor data. Upon receiving a predictResult message, it displays the prediction on the page.

Run both the server and client to see the full app in action:

[In one terminal, run this first]
$ npm run start-client

[In another terminal, run this next]
$ npm run start-server 

Open the client page in your browser (http://localhost:8080). When model training finishes, click on the Predict Sample button. You should see a prediction result displayed in the browser. Feel free to modify the sample sensor data with some examples from the test CSV file and see how accurately the model predicts.

In this Codelab, you implemented a simple machine learning web application using TensorFlow.js. You trained a custom model for classifying baseball pitch types from sensor data. You wrote Node.js code to execute training on the server, and call inference on the trained model using data sent from the client.

Be sure to visit tensorflow.org/js for more examples and demos with code to see how you can use TensorFlow.js in your applications.