Mengonfigurasi Eventarc untuk memicu Workflows yang terintegrasi dengan GKE Autopilot dan Pub/Sub

Mengonfigurasi Eventarc untuk memicu Workflows yang terintegrasi dengan GKE Autopilot dan Pub/Sub

Tentang codelab ini

subjectTerakhir diperbarui Feb 2, 2023
account_circleDitulis oleh Andrey Shakirov, Christopher Grant

1. Ringkasan

Di lab ini, Anda akan membuat pemicu Eventarc yang menghubungkan topik Pub/Sub ke layanan Workflows. Eventarc memungkinkan Anda memisahkan komunikasi layanan ke layanan, sehingga solusi Anda lebih dapat diperluas dan didorong oleh peristiwa. Anda akan membuat alur kerja yang mencakup beberapa langkah untuk menjalankan proses bisnis guna menghitung poin reward pelanggan atas pemesanan di Cymbal Eats. Alur kerja akan mengirimkan beberapa permintaan ke aplikasi yang berjalan di GKE Autopilot dan memublikasikan pesan ke topik Pub/Sub untuk memberi tahu aplikasi Order Service tentang poin reward yang dihitung.

6c0606022b76f79d.pngS

Apa itu Autopilot GKE?

GKE Autopilot adalah mode operasi di GKE tempat Google mengelola konfigurasi cluster Anda, termasuk node, penskalaan, keamanan, dan setelan lainnya yang telah dikonfigurasi sebelumnya. Cluster Autopilot dioptimalkan untuk menjalankan sebagian besar workload produksi, dan menyediakan resource komputasi berdasarkan manifes Kubernetes Anda. Konfigurasi yang disederhanakan ini mengikuti praktik terbaik dan rekomendasi GKE untuk penyiapan cluster dan workload, skalabilitas, serta keamanan. Untuk mengetahui daftar setelan bawaan, lihat tabel Autopilot dan Perbandingan standar.

Dengan GKE Standard, pengguna bertanggung jawab untuk mengelola node pekerja dan konfigurasi node pool, sedangkan sisanya ditangani oleh GKE.

Tanggung jawab Pelanggan vs Google saat menjalankan dalam mode GKE Standard

85500aad65f87437.png

Dengan Autopilot GKE, konfigurasi dan pengelolaan kumpulan node menjadi tanggung jawab Google. Dengan begitu, Anda dapat berfokus pada aplikasi dan layanan yang berjalan di atas cluster.

Apa itu Eventarc?

Eventarc memungkinkan Anda membangun arsitektur berbasis peristiwa tanpa harus menerapkan, menyesuaikan, atau memelihara infrastruktur yang mendasarinya. Eventarc menawarkan solusi standar untuk mengelola aliran perubahan status, yang disebut peristiwa, di antara microservice yang dipisahkan. Saat dipicu, Eventarc merutekan peristiwa ini melalui langganan Pub/Sub ke berbagai tujuan (misalnya, Alur Kerja, Cloud Run) sekaligus mengelola pengiriman, keamanan, otorisasi, kemampuan observasi, dan penanganan error untuk Anda.

Penyedia Acara Google

  • Lebih dari 90 penyedia Google Cloud. Penyedia ini mengirim peristiwa secara langsung dari sumber (misalnya, Cloud Storage) atau melalui entri Cloud Audit Logs.
  • Penyedia Pub/Sub. Penyedia ini mengirim peristiwa ke Eventarc menggunakan pesan Pub/Sub.

Penyedia pihak ketiga

Penyedia pihak ketiga adalah entitas non-Google yang menawarkan sumber Eventarc.

Pemicu Eventarc

  • Peristiwa Cloud Pub/Sub. Eventarc dapat dipicu oleh pesan yang dipublikasikan ke topik Pub/Sub.
  • Peristiwa Cloud Audit Logs (CAL). Cloud Audit Logs menyediakan log audit Aktivitas Admin dan Akses Data untuk setiap project, folder, dan organisasi Cloud.
  • Peristiwa langsung. Eventarc dapat dipicu oleh berbagai peristiwa langsung seperti update pada bucket Cloud Storage atau pembaruan pada template Firebase Remote Config.

Tujuan acara

c7ca054200edf1b3.png

Apa itu Workflows?

Workflows adalah layanan terkelola sepenuhnya yang memungkinkan Anda mengintegrasikan microservice, tugas, dan API. Workflows adalah layanan serverless dan akan diskalakan untuk memenuhi permintaan Anda.

Kasus penggunaan Workflows:

  • Alur kerja berbasis peristiwa dijalankan berdasarkan pemicu yang ditentukan. Misalnya, saat pesanan baru dikirim dan Anda ingin menghitung poin loyalitas pelanggan. Atau saat pesanan dibatalkan, acara dapat dipublikasikan dan semua layanan yang berminat akan memproses acara tersebut.
  • Alur kerja tugas batch menjalankan tugas secara rutin menggunakan Cloud Scheduler. Misalnya, pekerjaan malam hari untuk memeriksa item menu dalam status gagal dan menghapusnya.

Workflows sangat ideal untuk alur kerja yang mengorkestrasi layanan. Anda dapat mengotomatiskan proses yang meliputi aktivitas menunggu dan percobaan ulang hingga satu tahun.

Manfaat Workflows:

  • Konfigurasi daripada kode: Kurangi utang teknis dengan memindahkan logika ke konfigurasi, bukan menulis kode.
  • Sederhanakan arsitektur Anda. Dengan Workflows stateful, Anda dapat memvisualisasikan dan memantau integrasi layanan yang kompleks tanpa dependensi tambahan.
  • Menggabungkan keandalan dan fault tolerance. Kegagalan dapat dikontrol dengan penanganan error dan logika percobaan ulang kustom atau default, bahkan saat sistem lain gagal. Setiap langkah ke Cloud Spanner diperiksa untuk membantu Anda melacak progres.
  • Tak perlu pemeliharaan. Skalakan sesuai kebutuhan: Tidak ada yang perlu di-patch atau dipertahankan. Hanya bayar saat alur kerja Anda berjalan. Biaya tidak akan dikenakan saat alur kerja dalam status menunggu atau tidak aktif.

Di lab ini, Anda akan mengonfigurasi alur kerja berbasis peristiwa.

Yang akan Anda pelajari

Di lab ini, Anda akan mempelajari cara melakukan hal-hal berikut:

  • Mengonfigurasi topik Pub/Sub dan Eventarc untuk memicu Workflows
  • Mengonfigurasi Workflow untuk melakukan panggilan API ke aplikasi yang berjalan dengan GKE Autopilot
  • Mengonfigurasi Alur Kerja untuk memublikasikan pesan ke Pub/Sub
  • Cara membuat kueri log terstruktur Workflows di Cloud Logging dan menggunakan gcloud CLI

Prasyarat

  • Lab ini mengasumsikan Anda telah memahami lingkungan Cloud Console dan Cloud Shell.
  • Pengalaman GKE dan Cloud Pub/Sub sebelumnya membantu, tetapi tidak diwajibkan.

2. Penyiapan dan Persyaratan

Penyiapan Project Cloud

  1. Login ke Google Cloud Console dan buat project baru atau gunakan kembali project yang sudah ada. Jika belum memiliki akun Gmail atau Google Workspace, Anda harus membuatnya.

b35bf95b8bf3d5d8.png

a99b7ace416376c4.png

bd84a6d3004737c5.png

  • Project name adalah nama tampilan untuk peserta project ini. String ini adalah string karakter yang tidak digunakan oleh Google API. Anda dapat memperbaruinya kapan saja.
  • Project ID bersifat unik di semua project Google Cloud dan tidak dapat diubah (tidak dapat diubah setelah ditetapkan). Cloud Console otomatis membuat string unik; biasanya Anda tidak peduli tentang apa itu. Di sebagian besar codelab, Anda harus mereferensikan Project ID (biasanya diidentifikasi sebagai PROJECT_ID). Jika Anda tidak menyukai ID yang dihasilkan, Anda dapat membuat ID acak lainnya. Atau, Anda dapat mencobanya sendiri dan lihat apakah ID tersebut tersedia. ID tidak dapat diubah setelah langkah ini dan akan tetap ada selama durasi project.
  • Sebagai informasi, ada nilai ketiga, Project Number yang digunakan oleh beberapa API. Pelajari lebih lanjut ketiga nilai ini di dokumentasi.
  1. Selanjutnya, Anda harus mengaktifkan penagihan di Konsol Cloud untuk menggunakan resource/API Cloud. Menjalankan operasi dalam codelab ini seharusnya tidak memerlukan banyak biaya, bahkan mungkin tidak sama sekali. Untuk mematikan resource agar tidak menimbulkan penagihan di luar tutorial ini, Anda dapat menghapus resource yang dibuat atau menghapus seluruh project. Pengguna baru Google Cloud memenuhi syarat untuk mengikuti program Uji Coba Gratis senilai $300 USD.

Penyiapan Lingkungan

Aktifkan Cloud Shell dengan mengklik ikon di sebelah kanan kotak penelusuran.

8613854df02635a3.png

Clone repositori dan buka direktori, salin dan tempel perintah di bawah ini ke terminal, lalu tekan Enter.

git clone https://github.com/GoogleCloudPlatform/cymbal-eats.git && cd cymbal-eats/customer-service

Men-deploy dependensi yang diperlukan dengan menjalankan gke-lab-setup.sh

Resource berikut akan dibuat:

  • Cluster dan instance AlloyDB
  • Cluster GKE Autopilot
./gke-lab-setup.sh

Jika diminta untuk memberi otorisasi, klik "Authorize" untuk melanjutkan.

6356559df3eccdda.pngS

Penyiapan memerlukan waktu sekitar 10 menit.

Tunggu hingga skrip selesai dan Anda melihat output di bawah sebelum menjalankan langkah lainnya.

NAME: client-instance
ZONE: us-central1-c
MACHINE_TYPE: e2-medium
PREEMPTIBLE:
INTERNAL_IP: 10.128.0.9
EXTERNAL_IP: 35.232.109.233
STATUS: RUNNING

3. Cluster Autopilot GKE

Meninjau cluster GKE Autopilot

Setel variabel lingkungan Project:

export PROJECT_ID=$(gcloud config get-value project)
export PROJECT_NUMBER=$(gcloud projects describe $PROJECT_ID --format='value(projectNumber)')
export PROJECT_NAME=$(gcloud projects describe $PROJECT_ID --format='value(name)')

Sebagai bagian dari penyiapan awal, cluster dibuat menggunakan perintah di bawah ini (Anda tidak perlu menjalankan perintah ini):

gcloud container clusters create-auto $CLUSTER_NAME --region $REGION

Jalankan perintah untuk melihat cluster GKE Autopilot yang telah dibuat:

gcloud container clusters list

Contoh output:

772db9dd58172e0c.pngS

Jalankan perintah untuk menyimpan kredensial cluster:

CLUSTER_NAME=rewards-cluster
REGION=us-central1

gcloud container clusters get-credentials $CLUSTER_NAME --region=$REGION

Men-deploy aplikasi

Berikutnya, Anda akan men-deploy aplikasi Layanan Pelanggan. Ini adalah microservice berbasis java yang menggunakan framework Quarkus.

Buka folder cymbal-eats/customer-service dan jalankan perintah di bawah untuk membangun dan mengupload image container:

./mvnw clean package -DskipTests

export CUSTOMER_SERVICE_IMAGE=gcr.io/$PROJECT_ID/customer-service:1.0.0

gcloud builds submit --tag $CUSTOMER_SERVICE_IMAGE .

Tetapkan alamat IP Pribadi AlloyDB:

export DB_HOST=$(gcloud beta alloydb instances describe customer-instance \
    --cluster=customer-cluster \
    --region=$REGION \
    --format=json | jq \
    --raw-output ".ipAddress")

echo $DB_HOST

Jalankan perintah di bawah ini untuk membuat objek secret Kubernetes guna menyimpan kredensial database yang akan digunakan oleh aplikasi Customer Service untuk terhubung ke database:

DB_NAME=customers
DB_USER
=postgres
DB_PASSWORD
=password123

kubectl create secret generic gke
-alloydb-secrets \
 
--from-literal=database=$DB_NAME \
 
--from-literal=username=$DB_USER \
 
--from-literal=password=$DB_PASSWORD \
 
--from-literal=db_host=$DB_HOST

Jalankan perintah untuk mengganti CUSTOMER_SERVICE_IMAGE di file deployment.yaml:

sed "s@CUSTOMER_SERVICE_IMAGE@$CUSTOMER_SERVICE_IMAGE@g" deployment.yaml.tmpl > customer-service-deployment.yaml

Jalankan perintah untuk men-deploy aplikasi:

kubectl apply -f customer-service-deployment.yaml

Diperlukan waktu beberapa saat bagi aplikasi untuk beralih ke status BERJALAN.

Meninjau file spesifikasi deployment:

deployment.yaml.tmpl

Berikut adalah bagian konfigurasi yang menentukan resource yang diperlukan untuk menjalankan aplikasi ini.

    spec:
      containers:
      - name: customer-service
        image: CUSTOMER_SERVICE_IMAGE
        resources:
          requests:
            cpu: 250m
            memory: 512Mi
            ephemeral-storage: 512Mi
          limits:
            cpu: 500m
            memory: 1024Mi
            ephemeral-storage: 1Gi

Jalankan perintah untuk membuat IP eksternal yang akan digunakan dalam alur kerja:

SERVICE_NAME=customer-service

kubectl expose deployment $SERVICE_NAME \
  --type LoadBalancer --port 80 --target-port 8080

Jalankan perintah untuk memverifikasi resource yang dibuat:

kubectl get all

Contoh output:

179a23bd33793924.png

4. Tinjau Alur Kerja

Konsep Inti Workflows

Alur kerja terdiri dari serangkaian langkah yang dijelaskan menggunakan sintaksis Workflows( YAML atau JSON).

Setelah dibuat, alur kerja akan di-deploy, sehingga alur kerja siap untuk dieksekusi.

Eksekusi adalah eksekusi tunggal logika yang terdapat dalam definisi alur kerja. Alur kerja yang belum dijalankan tidak menghasilkan biaya. Semua eksekusi alur kerja bersifat independen, dan penskalaan produk yang cepat memungkinkan eksekusi serentak dalam jumlah tinggi.

Kontrol eksekusi

  • Langkah-langkah - Untuk membuat alur kerja, tentukan steps dan urutan eksekusi yang diinginkan menggunakan sintaksis Workflows. Setiap alur kerja harus memiliki setidaknya satu langkah.
  • Kondisi - Anda dapat menggunakan blok switch sebagai mekanisme pemilihan yang memungkinkan nilai ekspresi mengontrol alur eksekusi alur kerja.
  • Iterasi - Anda dapat menggunakan loop for untuk melakukan iterasi pada urutan angka atau melalui kumpulan data, seperti daftar atau peta.
  • Sub-alur kerja - Subalur kerja ini mirip dengan rutinitas atau fungsi dalam bahasa pemrograman, sehingga Anda dapat mengenkapsulasi langkah atau serangkaian langkah yang akan diulangi oleh alur kerja Anda beberapa kali.

Memicu eksekusi

  • Manual - Anda dapat mengelola alur kerja dari Konsol Google Cloud atau dari command line menggunakan Google Cloud CLI.
  • Terprogram - Library Klien Cloud untuk Workflows API, atau REST API, dapat digunakan untuk mengelola alur kerja.
  • Dijadwalkan - Anda dapat menggunakan Cloud Scheduler untuk menjalankan alur kerja pada jadwal tertentu.

Argumen Runtime

Data yang diteruskan saat runtime dapat diakses dengan menambahkan kolom params ke alur kerja utama Anda (ditempatkan di blok utama). Blok utama menerima satu argumen yang merupakan jenis data JSON yang valid. Kolom params memberi nama variabel yang digunakan alur kerja untuk menyimpan data yang Anda teruskan.

Logika Alur Kerja

Jika pelanggan tidak ada, alur kerja akan melakukan panggilan API untuk membuat pelanggan terlebih dahulu, lalu memperbarui poin reward. Berdasarkan jumlah total pesanan, alur kerja akan memilih pengganda untuk menghitung poin reward bagi pelanggan. Lihat contoh di bawah untuk mengetahui detailnya.

    - calculate_multiplier:
        switch:
          - condition: ${totalAmount < 10}
            steps:
              - set_multiplier1:
                  assign:
                    - multiplier: 2
          - condition: ${totalAmount >= 10 and totalAmount < 25}
            steps:
              - set_multiplier2:
                  assign:
                    - multiplier: 3
          - condition: ${totalAmount >= 25}
            steps:
              - set_multiplier3:
                  assign:
                    - multiplier: 5
    - calculate_rewards:
        assign:
            - rewardPoints: ${customerRecord.rewardPoints + multiplier}

99f9cf1076c03fb6.pngS

5. Mengonfigurasi dan men-deploy Alur Kerja

Jalankan perintah guna melihat alamat IP Eksternal untuk layanan:

kubectl get svc

Contoh output:

fe5cfec2bc836a5f.png

Setel variabel lingkungan di bawah menggunakan nilai External IP dari output sebelumnya.

CUSTOMER_SERVICE_URL=http://$(kubectl get svc customer-service -o=jsonpath='{.status.loadBalancer.ingress[0].ip}')

Ganti URL aplikasi Layanan Pelanggan di template alur kerja:

sed "s@CUSTOMER_SERVICE_URL@$CUSTOMER_SERVICE_URL@g" gkeRewardsWorkflow.yaml.tmpl > gkeRewardsWorkflow.yaml

Menetapkan lokasi untuk layanan Workflows dan variabel lingkungan project:

gcloud config set workflows/location ${REGION}

export PROJECT_ID=$(gcloud config get-value project)
export PROJECT_NUMBER=$(gcloud projects describe $PROJECT_ID --format='value(projectNumber)')
export PROJECT_NAME=$(gcloud projects describe $PROJECT_ID --format='value(name)')

Buat akun layanan kustom untuk alur kerja dengan izin berikut:

  • Memanggil Logging API
  • Memublikasikan pesan ke topik PubSub
export WORKFLOW_SERVICE_ACCOUNT=workflows-sa

gcloud iam service-accounts create ${WORKFLOW_SERVICE_ACCOUNT}

gcloud projects add-iam-policy-binding $PROJECT_ID \
  --member "serviceAccount:${WORKFLOW_SERVICE_ACCOUNT}@$PROJECT_ID.iam.gserviceaccount.com" \
  --role "roles/logging.logWriter"

gcloud projects add-iam-policy-binding $PROJECT_ID \
  --member "serviceAccount:${WORKFLOW_SERVICE_ACCOUNT}@$PROJECT_ID.iam.gserviceaccount.com" \
  --role "roles/pubsub.publisher"

Men-deploy alur kerja. Alur kerja dikonfigurasi untuk menggunakan akun layanan yang dibuat di langkah sebelumnya:

export WORKFLOW_NAME=rewardsWorkflow

gcloud workflows deploy ${WORKFLOW_NAME} \
  --source=gkeRewardsWorkflow.yaml \
  --service-account=${WORKFLOW_SERVICE_ACCOUNT}@$PROJECT_ID.iam.gserviceaccount.com

Tinjau sumber alur kerja dan detail lainnya(tab Pemicu). Saat ini tidak ada pemicu yang dikonfigurasi untuk menjalankan alur kerja ini. Anda akan menyiapkannya di langkah berikutnya.

66ba7ebbde76d5a6.pngS

6. Mengonfigurasi topik Pub/Sub dan pemicu Eventarc

Selanjutnya, Anda akan membuat dua topik Pub/Sub dan mengonfigurasi satu pemicu Eventarc.

Aplikasi Layanan Pesanan akan memublikasikan pesan ke order-topic berisi informasi tentang pesanan baru.

Alur kerja akan memublikasikan pesan ke order-points-topic dengan informasi tentang poin reward pesanan dan jumlah total. Layanan Pesanan(tidak di-deploy sebagai bagian dari lab ini) mengekspos endpoint yang digunakan oleh langganan Push untuk order-points-topic, guna memperbarui poin reward dan jumlah total per pesanan.

Buat topik Pub/Sub baru:

export TOPIC_ID=order-topic
export ORDER_POINTS_TOPIC_ID=order-points-topic
gcloud pubsub topics create $TOPIC_ID --project=$PROJECT_ID
gcloud pubsub topics create $ORDER_POINTS_TOPIC_ID --project=$PROJECT_ID

Menetapkan lokasi untuk layanan Eventarc:

gcloud config set eventarc/location ${REGION}

Membuat akun layanan kustom yang akan digunakan oleh pemicu Eventarc untuk menjalankan alur kerja.

export TRIGGER_SERVICE_ACCOUNT=eventarc-workflow-sa

gcloud iam service-accounts create ${TRIGGER_SERVICE_ACCOUNT}

Berikan akses ke akun layanan untuk menjalankan alur kerja.

gcloud projects add-iam-policy-binding ${PROJECT_ID} \
  --member="serviceAccount:${TRIGGER_SERVICE_ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com" \
  --role="roles/workflows.invoker"

Membuat pemicu Eventarc untuk memproses pesan Pub/Sub dan mengirimkannya ke Workflows.

gcloud eventarc triggers create new-orders-trigger \
  --destination-workflow=${WORKFLOW_NAME} \
  --destination-workflow-location=${REGION} \
  --event-filters="type=google.cloud.pubsub.topic.v1.messagePublished" \
  --service-account="${TRIGGER_SERVICE_ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com" \
  --transport-topic=$TOPIC_ID

Contoh output:

Creating trigger [new-orders-trigger] in project [qwiklabs-gcp-01-1a990bfcadb3], location [us-east1]...done.     
Publish to Pub/Sub topic [projects/qwiklabs-gcp-01-1a990bfcadb3/topics/order-topic] to receive events in Workflow [rewardsWorkflow].
WARNING: It may take up to 2 minutes for the new trigger to become active.

Tinjau pemicu Eventarc yang dibuat.

bda445561ad5f4.png

Tinjau langganan yang dibuat untuk pemicu.

3fccdda7d5526597.pngS

Tinjau perubahan di sisi alur kerja. Pemicu baru telah ditambahkan.

23d338abc16eaac8.pngS

7. Alur kerja pengujian

6c0606022b76f79d.pngS

Untuk menyimulasikan Layanan Pesanan, Anda akan mengirim pesan ke topik Pub/Sub dari Cloud Shell dan memverifikasi log Layanan Pelanggan di Konsol Cloud.

export TOPIC_ID=order-topic

gcloud pubsub topics publish $TOPIC_ID --message '{"userId":"id1","orderNumber":123456,"name":"Angela Jensen","email":"ajensen9090+eats@gmail.com","address":"1845 Denise St","city":"Mountain View","state":"CA","zip":"94043","orderItems":[{"id":7,"createDateTime":"2022-03-17T21:51:44.968584","itemImageURL":"https://images.unsplash.com/photo-1618449840665-9ed506d73a34?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=687&q=80","itemName":"Curry Plate","itemPrice":12.5,"itemThumbnailURL":"https://images.unsplash.com/photo-1618449840665-9ed506d73a34?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=687&q=80","spiceLevel":0,"status":"Ready","tagLine":"Spicy touch for your taste buds","updateDateTime":"2022-03-18T01:30:29.340584","inventory":8,"quantity":1}]}'

Contoh output:

messageIds:
- '5063709859203105'

Tinjau detail dan log eksekusi alur kerja.

1e802826c700cc3e.pngS

57ff9705bf507fb0.pngS

8. Logging Terstruktur Alur Kerja

Alur kerja dikonfigurasi untuk menulis log terstruktur dalam format JSON. Log ditulis menggunakan Cloud Logging API, resource workflows.googleapis.com/Workflow, dan dengan nama log projects/${PROJECT_ID}/logs/Workflows.

Tinjau konfigurasi logging di bawah.

    - log_totalAmount:
        call: sys.log
        args:
            json:
              orderNumber: ${order.orderNumber}
              totalAmount: ${totalAmount}
              multiplier: ${multiplier}
              totalRewardPoints: ${rewardPoints}
              orderRewardPoints: ${orderRewardPoints}
            severity: INFO

Buka Logs Explorer di Konsol Cloud dan jalankan kueri untuk menemukan pesanan yang diproses dengan jumlah total lebih dari $2 dolar.

Untuk menampilkan kolom kueri penelusuran, klik "Tampilkan kueri".

f0a57ff3d10bad2.png

resource.type="workflows.googleapis.com/Workflow" AND 
jsonPayload.totalAmount > 2 AND
timestamp >= "2023-01-01T00:00:00Z" AND
timestamp <= "2024-12-31T23:59:59Z"

Contoh output:

9093f87159f1b928.pngS

Buka Cloud Shell dan gunakan gcloud CLI untuk membaca log dengan perintah di bawah ini.

gcloud logging read 'resource.type="workflows.googleapis.com/Workflow" AND jsonPayload.totalAmount > 2 AND timestamp >= "2023-01-01T00:00:00Z" AND timestamp <= "2023-12-31T23:59:59Z"' --limit 10 --format="table(jsonPayload.orderNumber,jsonPayload.totalAmount,jsonPayload.orderRewardPoints,jsonPayload.totalRewardPoints,jsonPayload.multiplier)"

Contoh output menggunakan format table:

35d5fd851ecde60.pngS

Jalankan perintah di bawah untuk menampilkan log dalam format JSON:

gcloud logging read 'resource.type="workflows.googleapis.com/Workflow" AND jsonPayload.totalAmount > 2 AND timestamp >= "2023-01-01T00:00:00Z" AND timestamp <= "2023-12-31T23:59:59Z"' --limit 10 --format=json | jq

Contoh output menggunakan format json:

ac7421548ea9a9f2.png

9. Tinjau Catatan Pelanggan

(Langkah opsional)

Jalankan perintah di bawah untuk menetapkan variabel lingkungan URL Layanan Pelanggan.

CUSTOMER_SERVICE_URL=http://$(kubectl get svc customer-service -o=jsonpath='{.status.loadBalancer.ingress[0].ip}')

curl $CUSTOMER_SERVICE_URL/customer | jq

Contoh output:

[
  {
    "address": "1845 Denise St",
    "city": "Mountain View",
    "createDateTime": "2023-01-31T17:22:08.853644",
    "email": "ajensen9090+eats@gmail.com",
    "id": "id1",
    "name": "Angela Jensen",
    "rewardPoints": 4,
    "state": "CA",
    "updateDateTime": "2023-01-31T17:22:09.652117",
    "zip": "94043"
  }
]

Jalankan perintah untuk memublikasikan pesanan baru beberapa kali dan memverifikasi poin reward pelanggan dengan perintah curl.

Publikasikan pesan pesanan baru:

export TOPIC_ID=order-topic
gcloud pubsub topics publish $TOPIC_ID --message '{"userId":"id1","orderNumber":123456,"name":"Angela Jensen","email":"ajensen9090+eats@gmail.com","address":"1845 Denise St","city":"Mountain View","state":"CA","zip":"94043","orderItems":[{"id":7,"createDateTime":"2022-03-17T21:51:44.968584","itemImageURL":"https://images.unsplash.com/photo-1618449840665-9ed506d73a34?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=687&q=80","itemName":"Curry Plate","itemPrice":12.5,"itemThumbnailURL":"https://images.unsplash.com/photo-1618449840665-9ed506d73a34?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=687&q=80","spiceLevel":0,"status":"Ready","tagLine":"Spicy touch for your taste buds","updateDateTime":"2022-03-18T01:30:29.340584","inventory":8,"quantity":1}]}'

Verifikasi poin reward pelanggan:

curl $CUSTOMER_SERVICE_URL/customer | jq

Jalankan perintah di bawah untuk memeriksa log terbaru:

gcloud logging read 'resource.type="workflows.googleapis.com/Workflow" AND jsonPayload.totalAmount > 2 AND timestamp >= "2023-01-01T00:00:00Z" AND timestamp <= "2023-12-31T23:59:59Z"' --limit 10 --format="table(jsonPayload.orderNumber,jsonPayload.totalAmount,jsonPayload.orderRewardPoints,jsonPayload.totalRewardPoints,jsonPayload.multiplier)"

10. Selamat!

Selamat, Anda telah menyelesaikan codelab!

Yang telah kita bahas:

  • Cara mengonfigurasi topik Pub/Sub dan Eventarc untuk memicu Workflows
  • Cara mengonfigurasi Workflow untuk melakukan panggilan API ke aplikasi yang berjalan dengan GKE Autopilot
  • Cara mengonfigurasi Workflow untuk memublikasikan pesan ke Pub/Sub
  • Cara membuat kueri log terstruktur Workflows di Cloud Logging dan menggunakan gcloud CLI

Langkah berikutnya:

Pelajari codelab Cymbal Eats lainnya:

Pembersihan

Agar tidak menimbulkan biaya pada akun Google Cloud Anda untuk resource yang digunakan dalam tutorial ini, hapus project yang berisi resource, atau simpan project dan hapus resource satu per satu.

Menghapus project

Cara termudah untuk menghilangkan penagihan adalah dengan menghapus project yang Anda buat untuk tutorial.