如何使用 Gemini 將 FastAPI 聊天機器人應用程式部署至 Cloud Run

如何使用 Gemini 將 FastAPI 聊天機器人應用程式部署至 Cloud Run

程式碼研究室簡介

subject上次更新時間:4月 2, 2025
account_circle作者:Google 員工

1. 簡介

總覽

在本程式碼研究室中,您將瞭解如何將 FastAPI 應用程式部署至 Cloud Run。這個應用程式是提示 Gemini 模型的聊天機器人應用程式。

課程內容

  • 如何將 FastAPI 部署至 Cloud Run
  • 使用 Google 用戶端程式庫,在 Python 中透過 Cloud Run 提示 Gemini

2. 設定和需求

設定在本程式碼研究室中會用到的環境變數。

PROJECT_ID=<YOUR_PROJECT_ID>
REGION
=<YOUR_REGION>
GEMINI_MODEL
=gemini-2.0-flash-001

SERVICE_NAME
=fastapi-gemini
SERVICE_ACCOUNT
=fastapi-gemini-sa
SERVICE_ACCOUNT_ADDRESS
=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com

執行下列指令,建立服務帳戶:

gcloud iam service-accounts create $SERVICE_ACCOUNT \
 
--display-name="Service Account for FastAPI Gemini CR service"

將 Vertex AI 使用者角色指派給服務帳戶,讓該帳戶可存取 Gemini。

gcloud projects add-iam-policy-binding $PROJECT_ID \
 
--member="serviceAccount:$SERVICE_ACCOUNT_ADDRESS" \
 
--role="roles/aiplatform.user"

3. 建立應用程式

建立程式碼的目錄。

mkdir codelab-cr-fastapi-gemini
cd codelab
-cr-fastapi-gemini

首先,您必須建立範本目錄,才能建立 HTML 範本。

mkdir templates
cd templates

建立名為 ai_message.html 的新檔案,並在其中加入下列內容:

<div class="message-container ai-message-container">
    {{ ai_response_text }}
</div>

建立名為 message.html 的新檔案,並在其中加入下列內容:

<div class="message-container user-message">
    {{ message }}
</div>

建立名為 index.html 的新檔案,並在其中加入下列內容:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>FastAPI HTMX Gemini Chat</title>
    <style>
        body { font-family: sans-serif; max-width: 700px; margin: auto; padding: 20px; background-color: #f4f4f4; }
        #chat-messages { border: 1px solid #ccc; background-color: #fff; padding: 15px; height: 400px; overflow-y: scroll; margin-bottom: 15px; border-radius: 5px; box-shadow: inset 0 1px 3px rgba(0,0,0,0.1); }
        .message-container { margin-bottom: 10px; padding: 8px 12px; border-radius: 15px; max-width: 80%; word-wrap: break-word; }
        .user-message { background-color: #dcf8c6; align-self: flex-end; margin-left: auto; text-align: right; border-bottom-right-radius: 0;}
        .ai-message-container { background-color: #eee; align-self: flex-start; margin-right: auto; border-bottom-left-radius: 0;}
        .ai-message-container p { margin: 0.2em 0; } /* Spacing for streamed paragraphs */
        .ai-message-container p:first-child { margin-top: 0; }
        .ai-message-container p:last-child { margin-bottom: 0; }
        form { display: flex; margin-top: 10px; }
        input[type="text"] { flex-grow: 1; padding: 10px; border: 1px solid #ccc; border-radius: 20px; margin-right: 10px; }
        button { padding: 10px 20px; background-color: #0b93f6; color: white; border: none; border-radius: 20px; cursor: pointer; font-weight: bold; }
        button:hover { background-color: #0a84dd; }
    </style>
    <script src="https://unpkg.com/htmx.org@2.0.4"
    integrity="sha384-HGfztofotfshcF7+8n44JQL2oJmowVChPTg48S+jvZoztPfvwD79OC/LTtG6dMp+" crossorigin="anonymous"></script>
    <script src="https://unpkg.com/htmx-ext-sse@2.2.2" crossorigin="anonymous"></script>
</head>
<body>

    <h1>Chat with Gemini</h1>

    <div id="chat-messages">
        {% for msg in messages %}
             {# Render initial messages if needed #}
        {% endfor %}
    </div>

    <form
        hx-post="/ask"             {# Post to the /ask endpoint #}
        hx-target="#chat-messages" {# Target the main chat area #}
        hx-swap="beforeend"        {# Append the response (user msg + AI placeholder) #}
        hx-on::after-request="this.reset(); document.getElementById('chat-messages').scrollTop = document.getElementById('chat-messages').scrollHeight;" {# Clear form & scroll down #}
        >
        <input type="text" name="message" placeholder="Ask Gemini..." autofocus autocomplete="off">
        <button type="submit">Send</button>
    </form>

    <script>
        // Initial scroll to bottom on page load (if needed)
        window.onload = () => {
            const chatBox = document.getElementById('chat-messages');
            chatBox.scrollTop = chatBox.scrollHeight;
        }
    </script>

</body>
</html>

接著,請在根目錄中建立 Python 程式碼和其他檔案

cd ..

使用以下內容建立 .gcloudignore 檔案:

__pycache__

建立名為 main.py 的檔案,並在其中加入下列內容:

from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from typing import List, Annotated
from google import genai
import os

# in case the env var isn't set, use YOUR_<VARIABLE> as the default
# to help with debugging
project_id = os.getenv("PROJECT_ID", "YOUR_PROJECT_ID")
region = os.getenv("REGION", "YOUR_REGION")
gemini_model = os.getenv("GEMINI_MODEL", "gemini-2.0-flash-001")

app = FastAPI(title="FastAPI HTMX Chat")

templates = Jinja2Templates(directory="templates")

genai_client = genai.Client(
   
vertexai=True, project=project_id, location=region
)

system_prompt = f"""
You're a chatbot that helps pass the time with small talk, that is
polite conversation about unimportant or uncontroversial matters
that allows people to pass the time. Please keep your answers short.
"""

chat_messages: List[str] = []

# --- Routes ---
@app.get("/", response_class=HTMLResponse)
async def get_chat_ui(request: Request):
    """Serves the main chat page."""
   
print("Serving index.html")
   
return templates.TemplateResponse(
       
"index.html",
       
{"request": request, "messages": chat_messages} # Pass existing messages
   
)

@app.post("/ask", response_class=HTMLResponse)
async def ask_gemini_and_respond(
   
request: Request,
   
# Use Annotated for dependency injection with Form data
   
message: Annotated[str, Form()]
):
   
   
user_msg_html = templates.get_template('message.html').render({'message': message})
   
   
print("asking gemini...")
   
response = genai_client.models.generate_content(
       
model=gemini_model,
       
contents=[message],
       
config=genai.types.GenerateContentConfig(
           
system_instruction=system_prompt,
           
temperature=0.7,
       
),
   
)
   
   
print("Gemini responded with: " + response.text)
   
   
ai_response_html = templates.get_template('ai_message.html').render({'ai_response_text': response.text})

   
combined_html = user_msg_html + ai_response_html

   
return HTMLResponse(content=combined_html)

使用以下內容建立 Dockerfile

# Build stage
FROM python:3.12-slim AS builder

WORKDIR /app

# Install poetry
RUN pip install poetry
RUN poetry self add poetry-plugin-export

# Copy poetry files
COPY pyproject.toml poetry.lock* ./

# Copy application code
COPY . .

# Export dependencies to requirements.txt
RUN poetry export -f requirements.txt --output requirements.txt

# Final stage
FROM python:3.12-slim

RUN apt-get update && apt-get install -y libcairo2 python3-dev libffi-dev

WORKDIR /app

# Copy files from builder
COPY --from=builder /app/ .

# Install dependencies
RUN pip install --no-cache-dir -r requirements.txt

# Compile bytecode to improve startup latency
# -q: Quiet mode
# -b: Write legacy bytecode files (.pyc) alongside source
# -f: Force rebuild even if timestamps are up-to-date
RUN python -m compileall -q -b -f .

# Expose port
EXPOSE 8080

# Run the application
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8080"]

建立 pyproject.toml 檔案

[tool.poetry]
name = "codelab"
version = "0.1.0"
description = ""
authors = ["Your Name <you@example.com>"]
readme = "README.md"

[tool.poetry.dependencies]
python = "^3.12"
fastapi = "^0.115.12"
uvicorn = {extras = ["standard"], version = "^0.34.0"}
jinja2 = "^3.1.6"
python-multipart = "^0.0.20"
google-genai = "^1.8.0"


[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

4. 部署至 Cloud Run

gcloud run deploy $SERVICE_NAME \
 --source . \
 --allow-unauthenticated \
 --service-account=$SERVICE_ACCOUNT_ADDRESS \
 --set-env-vars=PROJECT_ID=$PROJECT_ID \
 --set-env-vars=REGION=$REGION \
 --set-env-vars=GEMINI_MODEL=$GEMINI_MODEL

5. 測試服務

在網路瀏覽器中開啟服務網址,並向 Gemini 提問,例如「為什麼天空是藍色的?」

6. 恭喜!

恭喜您完成程式碼研究室!

涵蓋內容

  • 如何將 FastAPI 部署至 Cloud Run
  • 使用 Google 用戶端程式庫,在 Python 中透過 Cloud Run 提示 Gemini

7. 清除所用資源

如要刪除 Cloud Run 服務,請前往 Cloud Run 控制台 (https://console.cloud.google.com/run) 並刪除服務。

如果您選擇刪除整個專案,可以前往 https://console.cloud.google.com/cloud-resource-manager,選取您在步驟 2 中建立的專案,然後選擇「Delete」(刪除)。如果您刪除專案,就必須在 Cloud SDK 中變更專案。您可以執行 gcloud projects list 來查看所有可用專案的清單。