Como ajustar um LLM usando os jobs do Cloud Run

Como ajustar um LLM usando os jobs do Cloud Run

Sobre este codelab

subjectÚltimo mar. 21, 2025 atualizado
account_circleEscrito por um Googler

1. Introdução

Visão geral

Neste exemplo, você vai ajustar um modelo Gemma-2B com um conjunto de dados de texto para SQL com a intenção de fazer com que o LLM responda com uma consulta SQL quando receber uma pergunta em linguagem natural. Em seguida, você vai usar o modelo ajustado no Cloud Run com o vLLM.

O que você vai aprender

  • Como fazer a sintonia fina usando a GPU do Cloud Run Jobs
  • Como usar a configuração da VPC direta em um job de GPU para fazer o upload e a exibição do modelo mais rapidamente

2. Antes de começar

Para usar o recurso de GPUs, você precisa solicitar um aumento de cota para uma região com suporte. A cota necessária é nvidia_l4_gpu_allocation_no_zonal_redundancy, que está na API Cloud Run Admin. Este é o link direto para solicitar a cota.

3. Configuração e requisitos

Defina as variáveis de ambiente que serão usadas neste codelab.

PROJECT_ID=<YOUR_PROJECT_ID>
REGION
=<YOUR_REGION>
HF_TOKEN
=<YOUR_HF_TOKEN>

AR_REPO
=codelab-finetuning-jobs
IMAGE_NAME
=finetune-to-gcs
JOB_NAME
=finetuning-to-gcs-job
BUCKET_NAME
=$PROJECT_ID-codelab-finetuning-jobs
SECRET_ID
=HF_TOKEN
SERVICE_ACCOUNT
="finetune-job-sa"
SERVICE_ACCOUNT_ADDRESS
=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com

Crie a conta de serviço executando este comando:

gcloud iam service-accounts create $SERVICE_ACCOUNT \
 
--display-name="Cloud Run job to access HF_TOKEN Secret ID"

Use o Secret Manager para armazenar o token de acesso do HuggingFace.

Saiba mais sobre como criar e usar secrets nas documentações do Secret Manager.

gcloud secrets create $SECRET_ID \
   
--replication-policy="automatic"

printf $HF_TOKEN
| gcloud secrets versions add $SECRET_ID --data-file=-

Você vai ver um resultado semelhante a este:

you'll see output similar to

Created secret [HF_TOKEN].
Created version [1] of the secret [HF_TOKEN].

Conceda à conta de serviço de computação padrão o papel de Acessador de secrets do Gerenciador de secrets

gcloud secrets add-iam-policy-binding $SECRET_ID \
   
--member serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
   
--role='roles/secretmanager.secretAccessor'

Crie um bucket que hospedará seu modelo ajustado

gsutil mb -l $REGION gs://$BUCKET_NAME

Em seguida, conceda ao SA acesso ao bucket.

gcloud storage buckets add-iam-policy-binding gs://$BUCKET_NAME \
--member=serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
--role=roles/storage.objectAdmin

Criar um repositório do Artifact Registry para o job

gcloud artifacts repositories create $AR_REPO \
   
--repository-format=docker \
   
--location=$REGION \
   
--description="codelab for finetuning using CR jobs" \
   
--project=$PROJECT_ID

4. Criar a imagem do job do Cloud Run

Na próxima etapa, você vai criar o código que faz o seguinte:

  • Importa o gemma-2b do huggingface
  • Realiza o ajuste fino em gemma-2b com o conjunto de dados de texto para SQL usando o conjunto de dados do huggingface. O job usa uma única GPU L4 para ajustes finos.
  • Faz o upload do modelo ajustado chamado new_model para o bucket do GCS do usuário

Crie um diretório para o código de job de ajuste fino.

mkdir codelab-finetuning-job
cd codelab
-finetuning-job

Crie um arquivo chamado finetune.py.

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch
from datasets import load_dataset, Dataset
from transformers import (
   
AutoModelForCausalLM,
   
AutoTokenizer,
   
BitsAndBytesConfig,
   
TrainingArguments,

)
from peft import LoraConfig, PeftModel

from trl import SFTTrainer
from pathlib import Path

# GCS bucket to upload the model
bucket_name = os.getenv("BUCKET_NAME", "YOUR_BUCKET_NAME")

# The model that you want to train from the Hugging Face hub
model_name = os.getenv("MODEL_NAME", "google/gemma-2b")

# The instruction dataset to use
dataset_name = "b-mc2/sql-create-context"

# Fine-tuned model name
new_model = os.getenv("NEW_MODEL", "gemma-2b-sql")

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = int(os.getenv("LORA_R", "4"))

# Alpha parameter for LoRA scaling
lora_alpha = int(os.getenv("LORA_ALPHA", "8"))

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 1

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = True
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = int(os.getenv("TRAIN_BATCH_SIZE", "1"))

# Batch size per GPU for evaluation
per_device_eval_batch_size = int(os.getenv("EVAL_BATCH_SIZE", "2"))

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = int(os.getenv("GRADIENT_ACCUMULATION_STEPS", "1"))

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = int(os.getenv("LOGGING_STEPS", "50"))

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = int(os.getenv("MAX_SEQ_LENGTH", "512"))

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {'':torch.cuda.current_device()}

# Set limit to a positive number
limit = int(os.getenv("DATASET_LIMIT", "5000"))

dataset = load_dataset(dataset_name, split="train")
if limit != -1:
   
dataset = dataset.shuffle(seed=42).select(range(limit))


def transform(data):
   
question = data['question']
   
context = data['context']
   
answer = data['answer']
   
template = "Question: {question}\nContext: {context}\nAnswer: {answer}"
   
return {'text': template.format(question=question, context=context, answer=answer)}


transformed = dataset.map(transform)

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
   
load_in_4bit=use_4bit,
   
bnb_4bit_quant_type=bnb_4bit_quant_type,
   
bnb_4bit_compute_dtype=compute_dtype,
   
bnb_4bit_use_double_quant=use_nested_quant,
)

# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
   
major, _ = torch.cuda.get_device_capability()
   
if major >= 8:
       
print("=" * 80)
       
print("Your GPU supports bfloat16")
       
print("=" * 80)

# Load base model
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
model = AutoModelForCausalLM.from_pretrained(
   
model_name,
   
quantization_config=bnb_config,
   
device_map=device_map,
   
torch_dtype=torch.float16,
)
model.config.use_cache = False
model.config.pretraining_tp = 1

# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training

# Load LoRA configuration
peft_config = LoraConfig(
   
lora_alpha=lora_alpha,
   
lora_dropout=lora_dropout,
   
r=lora_r,
   
bias="none",
   
task_type="CAUSAL_LM",
   
target_modules=["q_proj", "v_proj"]
)

# Set training parameters
training_arguments = TrainingArguments(
   
output_dir=output_dir,
   
num_train_epochs=num_train_epochs,
   
per_device_train_batch_size=per_device_train_batch_size,
   
gradient_accumulation_steps=gradient_accumulation_steps,
   
optim=optim,
   
save_steps=save_steps,
   
logging_steps=logging_steps,
   
learning_rate=learning_rate,
   
weight_decay=weight_decay,
   
fp16=fp16,
   
bf16=bf16,
   
max_grad_norm=max_grad_norm,
   
max_steps=max_steps,
   
warmup_ratio=warmup_ratio,
   
group_by_length=group_by_length,
   
lr_scheduler_type=lr_scheduler_type,
)

trainer = SFTTrainer(
   
model=model,
   
train_dataset=transformed,
   
peft_config=peft_config,
   
dataset_text_field="text",
   
max_seq_length=max_seq_length,
   
tokenizer=tokenizer,
   
args=training_arguments,
   
packing=packing,
)

trainer.train()

trainer.model.save_pretrained(new_model)

# Reload model in FP16 and merge it with LoRA weights
base_model = AutoModelForCausalLM.from_pretrained(
   
model_name,
   
low_cpu_mem_usage=True,
   
return_dict=True,
   
torch_dtype=torch.float16,
   
device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, new_model)
model = model.merge_and_unload()

# Push to HF
# model.push_to_hub(new_model, check_pr=True)
# tokenizer.push_to_hub(new_model, check_pr=True)

# push to GCS

file_path_to_save_the_model = '/finetune/new_model'
model.save_pretrained(file_path_to_save_the_model)
tokenizer.save_pretrained(file_path_to_save_the_model)

Crie um arquivo requirements.txt.

accelerate==0.30.1
bitsandbytes
==0.43.1
datasets
==2.19.1
transformers
==4.41.0
peft
==0.11.1
trl
==0.8.6
torch
==2.3.0

Criar um Dockerfile

FROM nvidia/cuda:12.6.2-runtime-ubuntu22.04

RUN apt-get update && \
    apt-get -y --no-install-recommends install python3-dev gcc python3-pip git && \
    rm -rf /var/lib/apt/lists/*

COPY requirements.txt /requirements.txt

RUN pip3 install -r requirements.txt --no-cache-dir

COPY finetune.py /finetune.py

ENV PYTHONUNBUFFERED 1

CMD python3 /finetune.py --device cuda

Criar o contêiner no repositório do Artifact Registry

gcloud builds submit --tag $REGION-docker.pkg.dev/$PROJECT_ID/$AR_REPO/$IMAGE_NAME

5. Implantar e executar o job

Nesta etapa, você vai criar a configuração YAML de jobs com saída de VPC direta para fazer uploads mais rápidos no Google Cloud Storage.

Esse arquivo contém variáveis que você vai atualizar em uma etapa posterior.

Primeiro, crie um arquivo chamado finetune-job.yaml.

apiVersion: run.googleapis.com/v1
kind: Job
metadata:
  name: finetuning-to-gcs-job
  labels:
    cloud.googleapis.com/location: us-central1
  annotations:
    run.googleapis.com/launch-stage: ALPHA
spec:
  template:
    metadata:
      annotations:
        run.googleapis.com/execution-environment: gen2
        run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]'
    spec:
      parallelism: 1
      taskCount: 1
      template:
        spec:
          serviceAccountName: YOUR_SERVICE_ACCOUNT_NAME@YOUR_PROJECT_ID.iam.gserviceaccount.com
          containers:
          - name: finetune-to-gcs
            image: YOUR_REGION-docker.pkg.dev/YOUR_PROJECT_ID/YOUR_AR_REPO/YOUR_IMAGE_NAME
            env:
            - name: MODEL_NAME
              value: "google/gemma-2b"
            - name: NEW_MODEL
              value: "gemma-2b-sql-finetuned"
            - name: LORA_R
              value: "8"
            - name: LORA_ALPHA
              value: "16"
            - name: TRAIN_BATCH_SIZE
              value: "1"
            - name: EVAL_BATCH_SIZE
              value: "2"
            - name: GRADIENT_ACCUMULATION_STEPS
              value: "2"
            - name: DATASET_LIMIT
              value: "1000"
            - name: MAX_SEQ_LENGTH
              value: "512"
            - name: LOGGING_STEPS
              value: "5"
            - name: HF_TOKEN
              valueFrom:
                secretKeyRef:
                  key: 'latest'
                  name: HF_TOKEN
            resources:
              limits:
                cpu: 8000m
                nvidia.com/gpu: '1'
                memory: 32Gi
            volumeMounts:
            - mountPath: /finetune/new_model
              name: finetuned_model
          volumes:
          - name: finetuned_model
            csi:
              driver: gcsfuse.run.googleapis.com
              readOnly: false
              volumeAttributes:
                bucketName: YOUR_PROJECT_ID-codelab-finetuning-jobs
          maxRetries: 3
          timeoutSeconds: '3600'
          nodeSelector:
            run.googleapis.com/accelerator: nvidia-l4

Agora, substitua os marcadores de posição pelas variáveis de ambiente da imagem executando o seguinte comando:

sed -i "s/YOUR_SERVICE_ACCOUNT_NAME/$SERVICE_ACCOUNT/; s/YOUR_PROJECT_ID/$PROJECT_ID/;  s/YOUR_PROJECT_ID/$PROJECT_ID/; s/YOUR_REGION/$REGION/; s/YOUR_AR_REPO/$AR_REPO/; s/YOUR_IMAGE_NAME/$IMAGE_NAME/; s/YOUR_PROJECT_ID/$PROJECT_ID/" finetune-job.yaml

Em seguida, crie o job do Cloud Run

gcloud alpha run jobs replace finetune-job.yaml

E execute o job. Isso vai levar cerca de 10 minutos.

gcloud alpha run jobs execute $JOB_NAME --region $REGION

6. Usar um serviço do Cloud Run para oferecer o modelo ajustado com o vLLM

Crie uma pasta para o código do serviço do Cloud Run que vai servir o modelo ajustado

cd ..
mkdir codelab
-finetuning-service
cd codelab
-finetuning-service

Crie um arquivo service.yaml

Essa configuração usa a VPC direta para acessar o bucket do GCS por uma rede particular para downloads mais rápidos.

Esse arquivo contém variáveis que você vai atualizar em uma etapa posterior.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: serve-gemma2b-sql
  labels:
    cloud.googleapis.com/location: us-central1
  annotations:
    run.googleapis.com/launch-stage: BETA
    run.googleapis.com/ingress: all
    run.googleapis.com/ingress-status: all
spec:
  template:
    metadata:
      labels:
      annotations:
        autoscaling.knative.dev/maxScale: '5'
        run.googleapis.com/cpu-throttling: 'false'
        run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]'
    spec:
      containers:
      - name: serve-finetuned
        image: us-docker.pkg.dev/vertex-ai/vertex-vision-model-garden-dockers/pytorch-vllm-serve:20240220_0936_RC01
        ports:
        - name: http1
          containerPort: 8000
        resources:
          limits:
            cpu: 8000m
            nvidia.com/gpu: '1'
            memory: 32Gi
        volumeMounts:
        - name: fuse
          mountPath: /finetune/new_model
        command: ["python3", "-m", "vllm.entrypoints.api_server"]
        args:
        - --model=/finetune/new_model
        - --tensor-parallel-size=1
        env:
        - name: MODEL_ID
          value: 'new_model'
        - name: HF_HUB_OFFLINE
          value: '1'
      volumes:
      - name: fuse
        csi:
          driver: gcsfuse.run.googleapis.com
          volumeAttributes:
            bucketName: YOUR_BUCKET_NAME
      nodeSelector:
        run.googleapis.com/accelerator: nvidia-l4

Atualize o arquivo service.yaml com o nome do bucket.

sed -i "s/YOUR_BUCKET_NAME/$BUCKET_NAME/" service.yaml

Agora, implante o serviço do Cloud Run

gcloud alpha run services replace service.yaml

7. Testar o modelo ajustado

Primeiro, acesse o URL do serviço do Cloud Run.

SERVICE_URL=$(gcloud run services describe serve-gemma2b-sql --platform managed --region $REGION --format 'value(status.url)')

Crie o comando para o modelo.

USER_PROMPT="Question: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)"

Agora, enrole seu serviço

curl -X POST $SERVICE_URL/generate \
  -H "Content-Type: application/json" \
  -H "Authorization: bearer $(gcloud auth print-identity-token)" \
  -d @- <<EOF
{
    "prompt": "${USER_PROMPT}",
    "temperature": 0.1,
    "top_p": 1.0,
    "max_tokens": 56
}
EOF

Uma resposta semelhante a esta vai aparecer:

{"predictions":["Prompt:\nQuestion: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)\nOutput:\n CREATE TABLE people_to_candidates (candidate_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people (person_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people_to_candidates (person_id VARCHAR, candidate_id"]}