任務
時間長度:2 分鐘

你已向緊急情況 AI 說明自己的身分,行星地圖上現在會顯示你的信號,但信號微弱,淹沒在靜態雜訊中。在軌道上掃描的救援團隊可以在你的座標看到某個物體,但無法鎖定。訊號太弱。
如要將訊號強度提升至最高,請確認確切位置。太空船的導航系統已損壞,但墜毀時散落的殘骸中,有許多可供蒐集的證據。土壤樣本。奇異的植物。清楚看見外星夜空。
如果可以分析這項證據並判斷自己位於地球的哪個區域,AI 就能三角定位您的位置並放大信號。然後,也許就會有人找到你。
現在來拼湊全貌。
必要條件
⚠️ 如要完成這個等級,必須先完成等級 0。
開始前,請確認您已完成下列事項:
- [ ] 在專案根目錄中建立 config.json,並填入參與者 ID 和座標
- [ ] 世界地圖上顯示您的虛擬人偶
- [ ] 顯示您座標的信標 (昏暗)
如果尚未完成第 0 級,請先從該級別開始。
建構項目
在本層級中,您將建構多代理 AI 系統,使用平行處理分析墜機現場證據:

學習目標
| 概念 | 課程內容 |
|---|---|
| 多代理系統 | 建立單一責任的專屬代理 |
| ParallelAgent | 組合獨立代理,同時執行 |
| before_agent_callback | 在代理程式執行前擷取設定並設定狀態 |
| ToolContext | 在工具函式中存取狀態值 |
| 自訂 MCP 伺服器 | 使用命令式模式建構工具 (Cloud Run 上的 Python 程式碼) |
| OneMCP BigQuery | 連線至 Google 管理的 MCP,以存取 BigQuery |
| 多模態 AI | 使用 Gemini 分析圖片和影片 + 音訊 |
| 自動化調度管理 | 使用根自動化調度管理工具協調多個代理程式 |
| 雲端部署 | 將 MCP 伺服器和代理程式部署至 Cloud Run |
| A2A 準備事項 | 為日後的虛擬服務專員間通訊建立虛擬服務專員結構 |
地球的生物群落
行星表面分為四種不同的生物群落,各有獨特特徵:

座標會決定墜機地點的生物群系。墜機地點的證據反映了該生物群系的特徵:
| 生物群落 | 象限 | 地質證據 | 植物學證據 | 天文證據 |
|---|---|---|---|---|
| 🧊 CRYO | 西北 (x<50,y≥50) | 結凍的甲烷、冰晶 | 霜蕨、低溫植物 | 藍巨星 |
| 🌋 VOLCANIC | NE (x≥50, y≥50) | 黑曜石礦床 | 火花盛開,耐熱植物 | 紅矮星雙星 |
| 💜 BIOLUMINESCENT | 西南 (x<50, y<50) | 磷光土壤 | 發光真菌、發光植物 | 綠色脈衝星 |
| 🦴 FOSSILIZED | SE (x≥50,y<50) | 琥珀礦床、ite 礦物 | 石化樹木、古代植物 | 黃色太陽 |
您的工作:建構 AI 代理程式,分析證據並推斷您所在的生物群系。
設定環境
時間長度:3 分鐘
產生證據前,您需要啟用必要的 Google Cloud API,包括 BigQuery 的 OneMCP,這項 API 可提供 BigQuery 的受管理 MCP 存取權。
執行環境設定指令碼
👉💻 執行環境設定指令碼:
cd ~/way-back-home/level_1
chmod +x setup/setup_env.sh
./setup/setup_env.sh
輸出內容應如下所示:
================================================================
Level 1: Environment Setup
================================================================
Project: your-project-id
[1/6] Enabling core Google Cloud APIs...
✓ Vertex AI API enabled
✓ Cloud Run API enabled
✓ Cloud Build API enabled
✓ BigQuery API enabled
✓ Artifact Registry API enabled
✓ IAM API enabled
[2/6] Enabling OneMCP BigQuery (Managed MCP)...
✓ OneMCP BigQuery enabled
[3/6] Setting up service account and IAM permissions...
✓ Service account 'way-back-home-sa' created
✓ Vertex AI User role granted
✓ Cloud Run Invoker role granted
✓ BigQuery User role granted
✓ BigQuery Data Viewer role granted
✓ Storage Object Viewer role granted
[4/6] Configuring Cloud Build IAM for deployments...
✓ Cloud Build can now deploy services as way-back-home-sa
✓ Cloud Run Admin role granted to Compute SA
[5/6] Creating Artifact Registry repository...
✓ Repository 'way-back-home' created
[6/6] Creating environment variables file...
Found PARTICIPANT_ID in config.json: abc123...
✓ Created ../set_env.sh
================================================================
✅ Environment Setup Complete!
================================================================
來源環境變數
👉💻 取得環境變數:
source ~/way-back-home/set_env.sh
建立虛擬環境
👉💻 建立並啟用第 1 級的 Python 虛擬環境:
cd ~/way-back-home/level_1
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
設定星號目錄
👉💻 在 BigQuery 中設定星等目錄:
python setup/setup_star_catalog.py
畫面上會顯示下列訊息:
Setting up star catalog in project: your-project-id
==================================================
✓ Dataset way_back_home already exists
✓ Created table star_catalog
✓ Inserted 12 rows into star_catalog
📊 Star Catalog Summary:
----------------------------------------
NE (VOLCANIC): 3 stellar patterns
NW (CRYO): 3 stellar patterns
SE (FOSSILIZED): 3 stellar patterns
SW (BIOLUMINESCENT): 3 stellar patterns
----------------------------------------
✓ Star catalog is ready for triangulation queries
==================================================
✅ Star catalog setup complete!
生成墜機現場證據
時間長度:2 分鐘
現在,您可以根據座標產生個人化的墜機地點證據。
執行證據產生器
👉💻 從 level_1 目錄 (已啟用 venv),執行:
cd ~/way-back-home/level_1
python generate_evidence.py
輸出內容應如下所示:
✓ Welcome back, Explorer_Aria!
Coordinates: (23, 67)
Ready to analyze your crash site.
📍 Crash site analysis initiated...
Generating evidence for your location...
🔬 Generating soil sample...
✓ Soil sample captured: outputs/soil_sample.png
✨ Capturing star field...
✓ Star field captured: outputs/star_field.png
🌿 Recording flora activity...
(This may take 1-2 minutes for video generation)
Generating video...
Generating video...
Generating video...
✓ Flora recorded: outputs/flora_recording.mp4
📤 Uploading evidence to Mission Control...
✓ Config updated with evidence URLs
==================================================
✅ Evidence generation complete!
==================================================
查看證據
👉 請花點時間查看 outputs/ 資料夾中生成的證據檔案。每個名稱都反映了墜機地點的生物群系特徵,但您必須等到 AI 代理程式分析完畢,才會知道是哪個生物群系!
視您所在位置而定,產生的證據可能如下所示:

建構自訂 MCP 伺服器
時間長度:8 分鐘
逃生艙的機載分析系統已損壞,但原始感應器資料在墜毀時倖免於難。您將使用 FastMCP 建構 MCP 伺服器,提供地質和植物分析工具。
建立地質分析工具
這項工具會分析土壤樣本圖片,找出礦物成分。
👉✏️ 開啟 mcp-server/main.py,然後找出 #REPLACE-GEOLOGICAL-TOOL。請將其替換為:
GEOLOGICAL_PROMPT = """Analyze this alien soil sample image.
Classify the PRIMARY characteristic (choose exactly one):
1. CRYO - Frozen/icy minerals, crystalline structures, frost patterns,
blue-white coloration, permafrost indicators
2. VOLCANIC - Volcanic rock, basalt, obsidian, sulfur deposits,
red-orange minerals, heat-formed crystite structures
3. BIOLUMINESCENT - Glowing particles, phosphorescent minerals,
organic-mineral hybrids, purple-green luminescence
4. FOSSILIZED - Ancient compressed minerals, amber deposits,
petrified organic matter, golden-brown stratification
Respond ONLY with valid JSON (no markdown, no explanation):
{
"biome": "CRYO|VOLCANIC|BIOLUMINESCENT|FOSSILIZED",
"confidence": 0.0-1.0,
"minerals_detected": ["mineral1", "mineral2"],
"description": "Brief description of what you observe"
}
"""
@mcp.tool()
def analyze_geological(
image_url: Annotated[
str,
Field(description="Cloud Storage URL (gs://...) of the soil sample image")
]
) -> dict:
"""
Analyzes a soil sample image to identify mineral composition and classify the planetary biome.
Args:
image_url: Cloud Storage URL of the soil sample image (gs://bucket/path/image.png)
Returns:
dict with biome, confidence, minerals_detected, and description
"""
logger.info(f">>> 🔬 Tool: 'analyze_geological' called for '{image_url}'")
try:
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
GEOLOGICAL_PROMPT,
genai_types.Part.from_uri(file_uri=image_url, mime_type="image/png")
]
)
result = parse_json_response(response.text)
logger.info(f" ✓ Geological analysis complete: {result.get('biome', 'UNKNOWN')}")
return result
except Exception as e:
logger.error(f" ✗ Geological analysis failed: {str(e)}")
return {"error": str(e), "biome": "UNKNOWN", "confidence": 0.0}
建立植物分析工具
這項工具會分析植物的錄影內容,包括音軌。
👉✏️ 找出 #REPLACE-BOTANICAL-TOOL 並替換為:
BOTANICAL_PROMPT = """Analyze this alien flora video recording.
Pay attention to BOTH:
1. VISUAL elements: Plant appearance, movement patterns, colors, bioluminescence
2. AUDIO elements: Ambient sounds, rustling, organic noises, frequencies
Classify the PRIMARY biome (choose exactly one):
1. CRYO - Crystalline ice-plants, frost-covered vegetation,
crackling/tinkling sounds, slow brittle movements, blue-white flora
2. VOLCANIC - Heat-resistant plants, sulfur-adapted species,
hissing/bubbling sounds, smoke-filtering vegetation, red-orange flora
3. BIOLUMINESCENT - Glowing plants, pulsing light patterns,
humming/resonating sounds, reactive to stimuli, purple-green flora
4. FOSSILIZED - Ancient petrified plants, amber-preserved specimens,
deep resonant sounds, minimal movement, golden-brown flora
Respond ONLY with valid JSON (no markdown, no explanation):
{
"biome": "CRYO|VOLCANIC|BIOLUMINESCENT|FOSSILIZED",
"confidence": 0.0-1.0,
"species_detected": ["species1", "species2"],
"audio_signatures": ["sound1", "sound2"],
"description": "Brief description of visual and audio observations"
}
"""
@mcp.tool()
def analyze_botanical(
video_url: Annotated[
str,
Field(description="Cloud Storage URL (gs://...) of the flora video recording")
]
) -> dict:
"""
Analyzes a flora video recording (visual + audio) to identify plant species and classify the biome.
Args:
video_url: Cloud Storage URL of the flora video (gs://bucket/path/video.mp4)
Returns:
dict with biome, confidence, species_detected, audio_signatures, and description
"""
logger.info(f">>> 🌿 Tool: 'analyze_botanical' called for '{video_url}'")
try:
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
BOTANICAL_PROMPT,
genai_types.Part.from_uri(file_uri=video_url, mime_type="video/mp4")
]
)
result = parse_json_response(response.text)
logger.info(f" ✓ Botanical analysis complete: {result.get('biome', 'UNKNOWN')}")
return result
except Exception as e:
logger.error(f" ✗ Botanical analysis failed: {str(e)}")
return {"error": str(e), "biome": "UNKNOWN", "confidence": 0.0}
在本機測試 MCP 伺服器
👉💻 測試 MCP 伺服器:
cd ~/way-back-home/level_1/mcp-server
pip install -r requirements.txt
python main.py
畫面上會顯示下列訊息:
[INFO] Initialized Gemini client for project: your-project-id
[INFO] 🚀 Location Analyzer MCP Server starting on port 8080
[INFO] 📍 MCP endpoint: http://0.0.0.0:8080/mcp
[INFO] 🔧 Tools: analyze_geological, analyze_botanical

FastMCP 伺服器現在會透過 HTTP 傳輸模式執行。按下 Ctrl+C 即可停止。
將 MCP 伺服器部署至 Cloud Run
👉💻 部署:
cd ~/way-back-home/level_1/mcp-server
source ~/way-back-home/set_env.sh
gcloud builds submit . \
--config=cloudbuild.yaml \
--substitutions=_REGION="$REGION",_REPO_NAME="$REPO_NAME",_SERVICE_ACCOUNT="$SERVICE_ACCOUNT"
儲存服務網址
👉💻 儲存服務網址:
export MCP_SERVER_URL=$(gcloud run services describe location-analyzer \
--region=$REGION --format='value(status.url)')
echo "MCP Server URL: $MCP_SERVER_URL"
# Add to set_env.sh for later use
echo "export MCP_SERVER_URL=\"$MCP_SERVER_URL\"" >> ~/way-back-home/set_env.sh
建構專員代理
時間長度:8 分鐘
現在,您要建立三個專員代理程式,每個代理程式各負責一項工作。
建立地質分析師虛擬服務專員
👉✏️ 開啟 agent/agents/geological_analyst.py,然後找出 #REPLACE-GEOLOGICAL-AGENT。請將其替換為:
from google.adk.agents import Agent
from agent.tools.mcp_tools import get_geological_tool
geological_analyst = Agent(
name="GeologicalAnalyst",
model="gemini-2.5-flash",
description="Analyzes soil samples to classify planetary biome based on mineral composition.",
instruction="""You are a geological specialist analyzing alien soil samples.
## YOUR EVIDENCE TO ANALYZE
Soil sample URL: {soil_url}
## YOUR TASK
1. Call the analyze_geological tool with the soil sample URL above
2. Examine the results for mineral composition and biome indicators
3. Report your findings clearly
The four possible biomes are:
- CRYO: Frozen, icy minerals, blue/white coloring
- VOLCANIC: Magma, obsidian, volcanic rock, red/orange coloring
- BIOLUMINESCENT: Glowing, phosphorescent minerals, purple/green
- FOSSILIZED: Amber, ancient preserved matter, golden/brown
## REPORTING FORMAT
Always report your classification clearly:
"GEOLOGICAL ANALYSIS: [BIOME] (confidence: X%)"
Include a brief description of what you observed in the sample.
## IMPORTANT
- You do NOT synthesize with other evidence
- You do NOT confirm locations
- Just analyze the soil sample and report what you find
- Call the tool immediately with the URL provided above""",
tools=[get_geological_tool()]
)
建立植物分析師虛擬服務專員
👉✏️ 開啟 agent/agents/botanical_analyst.py,然後找出 #REPLACE-BOTANICAL-AGENT。請將其替換為:
from google.adk.agents import Agent
from agent.tools.mcp_tools import get_botanical_tool
botanical_analyst = Agent(
name="BotanicalAnalyst",
model="gemini-2.5-flash",
description="Analyzes flora recordings to classify planetary biome based on plant life and ambient sounds.",
instruction="""You are a botanical specialist analyzing alien flora recordings.
## YOUR EVIDENCE TO ANALYZE
Flora recording URL: {flora_url}
## YOUR TASK
1. Call the analyze_botanical tool with the flora recording URL above
2. Pay attention to BOTH visual AND audio elements in the recording
3. Report your findings clearly
The four possible biomes are:
- CRYO: Frost ferns, crystalline plants, cold wind sounds, crackling ice
- VOLCANIC: Fire blooms, heat-resistant flora, crackling/hissing sounds
- BIOLUMINESCENT: Glowing fungi, luminescent plants, ethereal hum, chiming
- FOSSILIZED: Petrified trees, ancient formations, deep resonant sounds
## REPORTING FORMAT
Always report your classification clearly:
"BOTANICAL ANALYSIS: [BIOME] (confidence: X%)"
Include descriptions of what you SAW and what you HEARD.
## IMPORTANT
- You do NOT synthesize with other evidence
- You do NOT confirm locations
- Just analyze the flora recording and report what you find
- Call the tool immediately with the URL provided above""",
tools=[get_botanical_tool()]
)
建立天文分析師虛擬服務專員
這個代理程式採用不同的方法,使用兩種工具模式:
- Local FunctionTool:Gemini Vision 可擷取星號特徵
- OneMCP BigQuery:透過 Google 管理的 MCP 查詢星體目錄
👉✏️ 開啟 agent/agents/astronomical_analyst.py,然後找出 #REPLACE-ASTRONOMICAL-AGENT。請將其替換為:
from google.adk.agents import Agent
from agent.tools.star_tools import (
extract_star_features_tool,
get_bigquery_mcp_toolset,
)
# Get the BigQuery MCP toolset
bigquery_toolset = get_bigquery_mcp_toolset()
astronomical_analyst = Agent(
name="AstronomicalAnalyst",
model="gemini-2.5-flash",
description="Analyzes star field images and queries the star catalog via OneMCP BigQuery.",
instruction="""You are an astronomical specialist analyzing alien night skies.
## YOUR EVIDENCE TO ANALYZE
Star field URL: {stars_url}
## YOUR TWO TOOLS
### TOOL 1: extract_star_features (Local Gemini Vision)
Call this FIRST with the star field URL above.
Returns: "primary_star": "...", "nebula_type": "...", "stellar_color": "..."
### TOOL 2: BigQuery MCP (execute_query)
Call this SECOND with the results from Tool 1.
Use this exact SQL query (replace the placeholders with values from Step 1):
SELECT quadrant, biome, primary_star, nebula_type
FROM `{project_id}.way_back_home.star_catalog`
WHERE LOWER(primary_star) = LOWER('PRIMARY_STAR_FROM_STEP_1')
AND LOWER(nebula_type) = LOWER('NEBULA_TYPE_FROM_STEP_1')
LIMIT 1
## YOUR WORKFLOW
1. Call extract_star_features with: {stars_url}
2. Get the primary_star and nebula_type from the result
3. Call execute_query with the SQL above (replacing placeholders)
4. Report the biome and quadrant from the query result
## BIOME REFERENCE
| Biome | Quadrant | Primary Star | Nebula Type |
|-------|----------|--------------|-------------|
| CRYO | NW | blue_giant | ice_blue |
| VOLCANIC | NE | red_dwarf_binary | fire |
| BIOLUMINESCENT | SW | green_pulsar | purple_magenta |
| FOSSILIZED | SE | yellow_sun | golden |
## REPORTING FORMAT
"ASTRONOMICAL ANALYSIS: [BIOME] in [QUADRANT] quadrant (confidence: X%)"
Include a description of the stellar features you observed.
## IMPORTANT
- You do NOT synthesize with other evidence
- You do NOT confirm locations
- Just analyze the stars and report what you find
- Start by calling extract_star_features with the URL above""",
tools=[extract_star_features_tool, bigquery_toolset]
)
建立 MCP 工具連結
時間長度:8 分鐘
建立連線至已部署 MCP 伺服器的工具包裝函式。
建立 MCP 工具連線 (自訂 MCP)
這會連線至部署在 Cloud Run 的自訂 FastMCP 伺服器。
👉✏️ 開啟 agent/tools/mcp_tools.py,然後找出 #REPLACE-MCP-TOOL-CONNECTION。請將其替換為:
import os
import logging
from google.adk.tools.mcp_tool.mcp_toolset import MCPToolset
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
logger = logging.getLogger(__name__)
MCP_SERVER_URL = os.environ.get("MCP_SERVER_URL")
_mcp_toolset = None
def get_mcp_toolset():
"""Get the MCPToolset connected to the location-analyzer server."""
global _mcp_toolset
if _mcp_toolset is not None:
return _mcp_toolset
if not MCP_SERVER_URL:
raise ValueError(
"MCP_SERVER_URL not set. Please run:\n"
" export MCP_SERVER_URL='https://location-analyzer-xxx.a.run.app'"
)
# FastMCP exposes MCP protocol at /mcp endpoint
mcp_endpoint = f"{MCP_SERVER_URL}/mcp"
logger.info(f"[MCP Tools] Connecting to: {mcp_endpoint}")
_mcp_toolset = MCPToolset(
connection_params=StreamableHTTPConnectionParams(
url=mcp_endpoint,
timeout=120, # 2 minutes for Gemini analysis
)
)
return _mcp_toolset
def get_geological_tool():
"""Get the geological analysis tool from the MCP server."""
return get_mcp_toolset()
def get_botanical_tool():
"""Get the botanical analysis tool from the MCP server."""
return get_mcp_toolset()
建立星級分析工具 (OneMCP BigQuery)
本節將示範受管理 MCP 模式。我們不會自行編寫 BigQuery 用戶端程式碼,而是連線至 Google 的 OneMCP BigQuery 伺服器。
👉✏️ 開啟 agent/tools/star_tools.py,然後找出 #REPLACE-STAR-TOOLS。請將其替換為:
import os
import json
import logging
from google import genai
from google.genai import types as genai_types
from google.adk.tools import FunctionTool
from google.adk.tools.mcp_tool.mcp_toolset import MCPToolset
from google.adk.tools.mcp_tool.mcp_session_manager import StreamableHTTPConnectionParams
import google.auth
import google.auth.transport.requests
logger = logging.getLogger(__name__)
# =============================================================================
# CONFIGURATION - Environment variables only
# =============================================================================
PROJECT_ID = os.environ.get("GOOGLE_CLOUD_PROJECT", "")
if not PROJECT_ID:
logger.warning("[Star Tools] GOOGLE_CLOUD_PROJECT not set")
# Initialize Gemini client for star feature extraction
genai_client = genai.Client(
vertexai=True,
project=PROJECT_ID or "placeholder",
location=os.environ.get("GOOGLE_CLOUD_LOCATION", "us-central1")
)
logger.info(f"[Star Tools] Initialized for project: {PROJECT_ID}")
# =============================================================================
# OneMCP BigQuery Connection
# =============================================================================
BIGQUERY_MCP_URL = "https://bigquery.googleapis.com/mcp"
_bigquery_toolset = None
def get_bigquery_mcp_toolset():
"""
Get the MCPToolset connected to Google's BigQuery MCP server.
This uses OAuth 2.0 authentication with Application Default Credentials.
The toolset provides access to BigQuery's pre-built MCP tools like:
- execute_query: Run SQL queries
- list_datasets: List available datasets
- get_table_schema: Get table structure
"""
global _bigquery_toolset
if _bigquery_toolset is not None:
return _bigquery_toolset
logger.info("[Star Tools] Connecting to OneMCP BigQuery...")
# Get OAuth credentials
credentials, project_id = google.auth.default(
scopes=["https://www.googleapis.com/auth/bigquery"]
)
# Refresh to get a valid token
credentials.refresh(google.auth.transport.requests.Request())
oauth_token = credentials.token
# Configure headers for BigQuery MCP
headers = {
"Authorization": f"Bearer {oauth_token}",
"x-goog-user-project": project_id or PROJECT_ID
}
# Create MCPToolset with StreamableHTTP connection
_bigquery_toolset = MCPToolset(
connection_params=StreamableHTTPConnectionParams(
url=BIGQUERY_MCP_URL,
headers=headers
)
)
logger.info("[Star Tools] Connected to BigQuery MCP")
return _bigquery_toolset
# =============================================================================
# Local FunctionTool: Star Feature Extraction
# =============================================================================
# This is a LOCAL tool that calls Gemini directly - demonstrating that
# you can mix local FunctionTools with MCP tools in the same agent.
STAR_EXTRACTION_PROMPT = """Analyze this alien night sky image and extract stellar features.
Identify:
1. PRIMARY STAR TYPE: blue_giant, red_dwarf, red_dwarf_binary, green_pulsar, yellow_sun, etc.
2. NEBULA TYPE: ice_blue, fire, purple_magenta, golden, etc.
3. STELLAR COLOR: blue_white, red_orange, green_purple, yellow_gold, etc.
Respond ONLY with valid JSON:
{"primary_star": "...", "nebula_type": "...", "stellar_color": "...", "description": "..."}
"""
def _parse_json_response(text: str) -> dict:
"""Parse JSON from Gemini response, handling markdown formatting."""
cleaned = text.strip()
if cleaned.startswith("```json"):
cleaned = cleaned[7:]
elif cleaned.startswith("```"):
cleaned = cleaned[3:]
if cleaned.endswith("```"):
cleaned = cleaned[:-3]
cleaned = cleaned.strip()
try:
return json.loads(cleaned)
except json.JSONDecodeError as e:
logger.error(f"Failed to parse JSON: {e}")
return {"error": f"Failed to parse response: {str(e)}"}
def extract_star_features(image_url: str) -> dict:
"""
Extract stellar features from a star field image using Gemini Vision.
This is a LOCAL FunctionTool - we call Gemini directly, not through MCP.
The agent will use this alongside the BigQuery MCP tools.
"""
logger.info(f"[Stars] Extracting features from: {image_url}")
response = genai_client.models.generate_content(
model="gemini-2.5-flash",
contents=[
STAR_EXTRACTION_PROMPT,
genai_types.Part.from_uri(file_uri=image_url, mime_type="image/png")
]
)
result = _parse_json_response(response.text)
logger.info(f"[Stars] Extracted: primary_star={result.get('primary_star')}")
return result
# Create the local FunctionTool
extract_star_features_tool = FunctionTool(extract_star_features)
建構自動化調度管理工具
時間長度:8 分鐘
現在請建立平行工作人員和根自動調度管理工具,負責協調所有事項。
建立平行分析團隊
首先,請建立回呼函式和 ParallelAgent,同時執行專家。
👉✏️ 開啟 agent/agent.py,然後找出 #REPLACE-PARALLEL-CREW。請將其替換為:
import os
import logging
import httpx
from google.adk.agents import Agent, ParallelAgent
from google.adk.agents.callback_context import CallbackContext
# Import specialist agents
from agent.agents.geological_analyst import geological_analyst
from agent.agents.botanical_analyst import botanical_analyst
from agent.agents.astronomical_analyst import astronomical_analyst
# Import confirmation tool
from agent.tools.confirm_tools import confirm_location_tool
logger = logging.getLogger(__name__)
# =============================================================================
# BEFORE AGENT CALLBACK - Fetches config and sets state
# =============================================================================
async def setup_participant_context(callback_context: CallbackContext) -> None:
"""
Fetch participant configuration and populate state for all agents.
This callback:
1. Reads PARTICIPANT_ID and BACKEND_URL from environment
2. Fetches participant data from the backend API
3. Sets state values: soil_url, flora_url, stars_url, username, x, y, etc.
4. Returns None to continue normal agent execution
"""
participant_id = os.environ.get("PARTICIPANT_ID", "")
backend_url = os.environ.get("BACKEND_URL", "https://api.waybackhome.dev")
project_id = os.environ.get("GOOGLE_CLOUD_PROJECT", "")
logger.info(f"[Callback] Setting up context for participant: {participant_id}")
# Set project_id and backend_url in state immediately
callback_context.state["project_id"] = project_id
callback_context.state["backend_url"] = backend_url
callback_context.state["participant_id"] = participant_id
if not participant_id:
logger.warning("[Callback] No PARTICIPANT_ID set - using placeholder values")
callback_context.state["username"] = "Explorer"
callback_context.state["x"] = 0
callback_context.state["y"] = 0
callback_context.state["soil_url"] = "Not available - set PARTICIPANT_ID"
callback_context.state["flora_url"] = "Not available - set PARTICIPANT_ID"
callback_context.state["stars_url"] = "Not available - set PARTICIPANT_ID"
return None
# Fetch participant data from backend API
try:
url = f"{backend_url}/participants/{participant_id}"
logger.info(f"[Callback] Fetching from: {url}")
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.get(url)
response.raise_for_status()
data = response.json()
# Extract evidence URLs
evidence_urls = data.get("evidence_urls", {})
# Set all state values for sub-agents to access
callback_context.state["username"] = data.get("username", "Explorer")
callback_context.state["x"] = data.get("x", 0)
callback_context.state["y"] = data.get("y", 0)
callback_context.state["soil_url"] = evidence_urls.get("soil", "Not available")
callback_context.state["flora_url"] = evidence_urls.get("flora", "Not available")
callback_context.state["stars_url"] = evidence_urls.get("stars", "Not available")
logger.info(f"[Callback] State populated for {data.get('username')}")
except Exception as e:
logger.error(f"[Callback] Error fetching participant config: {e}")
callback_context.state["username"] = "Explorer"
callback_context.state["x"] = 0
callback_context.state["y"] = 0
callback_context.state["soil_url"] = f"Error: {e}"
callback_context.state["flora_url"] = f"Error: {e}"
callback_context.state["stars_url"] = f"Error: {e}"
return None
# =============================================================================
# PARALLEL ANALYSIS CREW
# =============================================================================
evidence_analysis_crew = ParallelAgent(
name="EvidenceAnalysisCrew",
description="Runs geological, botanical, and astronomical analysis in parallel.",
sub_agents=[geological_analyst, botanical_analyst, astronomical_analyst]
)
建立根自動調度管理工具
現在請建立根代理,負責協調所有事項並使用回呼。
👉✏️ 在同一個檔案 (agent/agent.py) 中,找出 #REPLACE-ROOT-ORCHESTRATOR。請將其替換為:
# =============================================================================
# ROOT ORCHESTRATOR
# =============================================================================
root_agent = Agent(
name="MissionAnalysisAI",
model="gemini-2.5-flash",
description="Coordinates crash site analysis to confirm explorer location.",
instruction="""You are the Mission Analysis AI coordinating a rescue operation.
## Explorer Information
- Name: {username}
- Coordinates: ({x}, {y})
## Evidence URLs (automatically provided to specialists via state)
- Soil sample: {soil_url}
- Flora recording: {flora_url}
- Star field: {stars_url}
## Your Workflow
### STEP 1: DELEGATE TO ANALYSIS CREW
Tell the EvidenceAnalysisCrew to analyze all the evidence.
The evidence URLs are already available to the specialists.
### STEP 2: COLLECT RESULTS
Each specialist will report:
- "GEOLOGICAL ANALYSIS: [BIOME] (confidence: X%)"
- "BOTANICAL ANALYSIS: [BIOME] (confidence: X%)"
- "ASTRONOMICAL ANALYSIS: [BIOME] in [QUADRANT] quadrant (confidence: X%)"
### STEP 3: APPLY 2-OF-3 AGREEMENT RULE
- If 2 or 3 specialists agree → that's the answer
- If all 3 disagree → use judgment based on confidence
### STEP 4: CONFIRM LOCATION
Call confirm_location with the determined biome.
## Biome Reference
| Biome | Quadrant | Key Characteristics |
|-------|----------|---------------------|
| CRYO | NW | Frozen, blue, ice crystals |
| VOLCANIC | NE | Magma, red/orange, obsidian |
| BIOLUMINESCENT | SW | Glowing, purple/green |
| FOSSILIZED | SE | Amber, golden, ancient |
## Response Style
Be encouraging and narrative! Celebrate when the beacon activates!
""",
sub_agents=[evidence_analysis_crew],
tools=[confirm_location_tool],
before_agent_callback=setup_participant_context
)
建立位置確認工具
這項工具會使用 ToolContext 讀取回呼設定的狀態值。
👉✏️ 在 agent/tools/confirm_tools.py 中,找到 #REPLACE-CONFIRM-TOOL。請將其替換為:
import os
import logging
import requests
from google.adk.tools import FunctionTool
from google.adk.tools.tool_context import ToolContext
logger = logging.getLogger(__name__)
BIOME_TO_QUADRANT = {
"CRYO": "NW",
"VOLCANIC": "NE",
"BIOLUMINESCENT": "SW",
"FOSSILIZED": "SE"
}
def _get_actual_biome(x: int, y: int) -> tuple[str, str]:
"""Determine actual biome and quadrant from coordinates."""
if x < 50 and y >= 50:
return "NW", "CRYO"
elif x >= 50 and y >= 50:
return "NE", "VOLCANIC"
elif x < 50 and y < 50:
return "SW", "BIOLUMINESCENT"
else:
return "SE", "FOSSILIZED"
def confirm_location(biome: str, tool_context: ToolContext) -> dict:
"""
Confirm the explorer's location and activate the rescue beacon.
Uses ToolContext to read state values set by before_agent_callback.
"""
# Read from state (set by before_agent_callback)
participant_id = tool_context.state.get("participant_id", "")
x = tool_context.state.get("x", 0)
y = tool_context.state.get("y", 0)
backend_url = tool_context.state.get("backend_url", "https://api.waybackhome.dev")
# Fallback to environment variables
if not participant_id:
participant_id = os.environ.get("PARTICIPANT_ID", "")
if not backend_url:
backend_url = os.environ.get("BACKEND_URL", "https://api.waybackhome.dev")
if not participant_id:
return {"success": False, "message": "❌ No participant ID available."}
biome_upper = biome.upper().strip()
if biome_upper not in BIOME_TO_QUADRANT:
return {"success": False, "message": f"❌ Unknown biome: {biome}"}
# Get actual biome from coordinates
actual_quadrant, actual_biome = _get_actual_biome(x, y)
if biome_upper != actual_biome:
return {
"success": False,
"message": f"❌ Mismatch! Analysis: {biome_upper}, Actual: {actual_biome}"
}
quadrant = BIOME_TO_QUADRANT[biome_upper]
try:
response = requests.patch(
f"{backend_url}/participants/{participant_id}/location",
params={"x": x, "y": y},
timeout=10
)
response.raise_for_status()
return {
"success": True,
"message": f"🔦 BEACON ACTIVATED!\n\nLocation: {biome_upper} in {quadrant}\nCoordinates: ({x}, {y})"
}
except requests.exceptions.ConnectionError:
return {
"success": True,
"message": f"🔦 BEACON ACTIVATED! (Local)\n\nLocation: {biome_upper} in {quadrant}",
"simulated": True
}
except Exception as e:
return {"success": False, "message": f"❌ Failed: {str(e)}"}
confirm_location_tool = FunctionTool(confirm_location)
使用 ADK 網頁 UI 進行測試
時間長度:5 分鐘
現在,我們要在本機測試完整的多代理系統。
啟動 ADK 網路伺服器
👉💻 設定環境變數並啟動 ADK 網路伺服器:
cd ~/way-back-home/level_1
source ~/way-back-home/set_env.sh
# Verify environment is set
echo "PARTICIPANT_ID: $PARTICIPANT_ID"
echo "MCP Server: $MCP_SERVER_URL"
# Start ADK web server
adk web
畫面上會顯示下列訊息:
+-----------------------------------------------------------------------------+
| ADK Web Server started |
| |
| For local testing, access at http://localhost:8000. |
+-----------------------------------------------------------------------------+
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
存取網頁版 UI
👉 在 Cloud Shell 工具列 (右上角) 中,按一下「網頁預覽」圖示,然後選取「變更通訊埠」。
![]()
👉 將通訊埠設為 8000,然後按一下「變更並預覽」。

👉 ADK 網頁 UI 隨即開啟。在下拉式選單中選取「代理程式」。

執行分析
👉 在對話介面中輸入:
Analyze the evidence from my crash site and confirm my location to activate the beacon.
觀看多代理系統的運作方式:

- before_agent_callback 會先執行,擷取參與者資料
- 根協調器會收到您的要求,並填入狀態
- EvidenceAnalysisCrew 會啟動 (ParallelAgent)
- 三位專家並行執行,使用
{key}範本:- 地質分析師 → 看到「
{soil_url}」從「已解決」狀態變更 - BotanicalAnalyst → 看到
{flora_url}從狀態解決 - 天文分析師 → 看到
{stars_url}和{project_id}已解決
- 地質分析師 → 看到「
- 根層級自動化調度管理工具會合成 (2/3 協議)
- 使用 ToolContext 呼叫 confirm_location →「🔦 BEACON ACTIVATED!」
右側的追蹤面板會顯示所有代理程式互動和工具呼叫。
👉 測試完成後,請在終端機中按下 Ctrl+C 停止伺服器。
部署至 Cloud Run
時間長度:5 分鐘
現在請將多代理系統部署至 Cloud Run,確保應用程式對應用程式 (A2A) 做好準備。
部署代理程式
👉💻 使用 ADK CLI 部署至 Cloud Run:
cd ~/way-back-home/level_1
source ~/way-back-home/set_env.sh
adk deploy cloud_run \
--project=$GOOGLE_CLOUD_PROJECT \
--region=$REGION \
--service_name=mission-analysis-ai \
--with_ui \
--a2a \
./agent
出現 Allow unauthenticated invocations to [mission-analysis-ai] (y/N)? 提示時,請輸入 y,允許公開存取。
輸出內容應如下所示:
Building and deploying agent to Cloud Run...
✓ Container built successfully
✓ Deploying to Cloud Run...
✓ Service deployed: https://mission-analysis-ai-abc123-uc.a.run.app
Your agent is now live!
在 Cloud Run 上設定環境變數
部署的代理程式需要存取環境變數。更新服務:
👉💻 設定必要環境變數:
gcloud run services update mission-analysis-ai \
--region=$REGION \
--set-env-vars="GOOGLE_CLOUD_PROJECT=$GOOGLE_CLOUD_PROJECT,GOOGLE_CLOUD_LOCATION=$REGION,MCP_SERVER_URL=$MCP_SERVER_URL,BACKEND_URL=$BACKEND_URL,PARTICIPANT_ID=$PARTICIPANT_ID,GOOGLE_GENAI_USE_VERTEXAI=True"
儲存代理程式網址
👉💻 取得已部署的網址:
export AGENT_URL=$(gcloud run services describe mission-analysis-ai \
--region=$REGION --format='value(status.url)')
echo "Agent URL: $AGENT_URL"
# Add to set_env.sh
echo "export LEVEL1_AGENT_URL=\"$AGENT_URL\"" >> ~/way-back-home/set_env.sh
驗證部署作業
👉💻 在瀏覽器中開啟網址,測試已部署的代理程式 (--with_ui 旗標已部署 ADK 網頁介面),或透過 curl 進行測試:
curl -X GET "$AGENT_URL/list-apps"
畫面會顯示列出代理程式的回應。
結論
時間長度:1 分鐘
驗證檢查清單
✅ MCP 伺服器
- [ ] 已部署至 Cloud Run
- [ ] analyze_geological 工具可正常運作
- [ ] analyze_botanical 工具可正常運作
✅ 專家代理程式
- [ ] GeologicalAnalyst 使用 {soil_url} (來自狀態)
- [ ] BotanicalAnalyst 使用 {flora_url} (來自狀態)
- [ ] AstronomicalAnalyst 使用 {stars_url} 和 {project_id} (來自狀態)
✅ before_agent_callback
- [ ] 從後端 API 擷取參與者資料
- [ ] 為所有子代理程式設定狀態值
- [ ] 使用環境中的 PARTICIPANT_ID
✅ ParallelAgent
- [ ] All three specialists run concurrently
- [ ] State is shared via InvocationContext
✅ Root Orchestrator
- [ ] Synthesizes with 2-of-3 agreement
- [ ] confirm_location uses ToolContext for state
- [ ] Beacon activates!
✅ 部署
- [ ] 代理程式已部署至 Cloud Run
- [ ] 可存取 A2A 端點
✅ 世界地圖
- [ ] Beacon 現在是亮色 (不是暗色)
- [ ] Biome 會在懸停時顯示
🎉 完成第 1 級!
救援信號現在會以最大強度廣播。經過三角定位的訊號可穿透大氣干擾,穩定地發出「我在這裡。我活了下來。快來找我。」
但地球上不只有你一個人。隨著信號啟動,您注意到地平線上其他燈光閃爍亮起,那是其他倖存者、其他墜機地點,以及其他成功存活的探險家。
![]()
在第 2 級中,你將學會處理緊急求救訊號,並與其他倖存者協調行動。救援行動不只是找到人,而是找到彼此。
疑難排解
「MCP_SERVER_URL not set」(未設定 MCP_SERVER_URL)
bash
export MCP_SERVER_URL=$(gcloud run services describe location-analyzer \
--region=$REGION --format='value(status.url)')
「PARTICIPANT_ID not set」(未設定參與者 ID)
bash
source ~/way-back-home/set_env.sh
echo $PARTICIPANT_ID
「找不到 BigQuery 資料表」
bash
python setup/setup_star_catalog.py
「專家要求提供網址」
這表示 {key} 範本無法運作。檢查:
- 根代理程式是否已設定 before_agent_callback?
- 回呼設定狀態值是否正確?
- 子代理是否使用 {soil_url} (而非 f 字串)?
「三項分析結果都不一致」
重新產生證據:python generate_evidence.py
「代理程式未在 adk 網頁中回應」 - 確認連接埠 8000 正確無誤 - 確認已設定 MCP_SERVER_URL 和 PARTICIPANT_ID - 檢查終端機是否有錯誤訊息
架構摘要
| 元件 | 類型 | 模式 | 目的 |
|---|---|---|---|
| setup_participant_context | 回撥電話 | before_agent_callback | 擷取設定,設定狀態 |
| GeologicalAnalyst | 代理 | {soil_url} 範本 | 土壤分類 |
| BotanicalAnalyst | 代理 | {flora_url} 範本 | 植物分類 |
| AstronomicalAnalyst | 代理 | {stars_url}, {project_id} | 星體三角測量 |
| confirm_location | 工具 | 存取 ToolContext 狀態 | 啟用信標 |
| EvidenceAnalysisCrew | ParallelAgent | 子代理組合 | 同時執行多項專案 |
| MissionAnalysisAI | 代理程式 (根) | 自動調度管理工具 + 回呼 | 協調 + 綜合 |
| location-analyzer | FastMCP 伺服器 | 自訂 MCP | 地質 + 植物分析 |
| bigquery.googleapis.com/mcp | OneMCP | 代管 MCP | BigQuery 存取權 |
掌握基本概念
✅ before_agent_callback:在代理執行前擷取設定
✅ {key} 狀態範本:在代理指令中存取狀態值
✅ ToolContext:在工具函式中存取狀態值
✅ 狀態共用:透過 InvocationContext 自動提供父項狀態給子項代理
✅ 多代理架構:專責代理,各司其職
✅ ParallelAgent:並行執行獨立工作
✅ 自訂 MCP 伺服器:在 Cloud Run 上建立自己的 MCP 伺服器
✅ OneMCP BigQuery:用於資料庫存取的受管理 MCP 模式
✅ 雲端部署:使用環境變數進行無狀態部署
✅ A2A 準備:代理已準備好進行代理間通訊
非遊戲玩家:實際應用
「精確找出您的位置」代表平行專家分析與共識,也就是同時執行多項專業的 AI 分析,並整合結果。
企業應用程式
| 用途 | Parallel Experts | 合成規則 |
|---|---|---|
| 醫療診斷 | 影像分析師、症狀分析師、實驗室分析師 | 2/3 可信度門檻 |
| 詐欺偵測 | 交易分析師、行為分析師、網路分析師 | 任何 1 個旗標 = 審查 |
| 文件處理 | OCR 代理程式、分類代理程式、擷取代理程式 | 所有人都必須同意 |
| 品質管制 | 目視檢查員、感應器分析師、規格檢查員 | 2/3 票 |
重要架構洞察
設定的 before_agent_callback:在開始時擷取設定一次,為所有子代理程式填入狀態。子代理程式不會讀取設定檔。
{key} 狀態範本:宣告式、簡潔、慣用。沒有 f 字串、匯入項目,也沒有 sys.path 操縱。
共識機制:2/3 的同意票可穩健處理模糊不清的狀況,不必全體一致同意。
ParallelAgent 處理獨立工作:如果分析彼此不相關,可以同時執行,加快速度。
兩種 MCP 模式:自訂 (自行建構) 與 OneMCP (Google 代管)。兩者都使用 StreamableHTTP。
無狀態部署:本機和部署的程式碼相同。環境變數 + 後端 API = 容器中沒有設定檔。
後續步驟
瞭解如何使用事件驅動模式和更進階的代理程式協調功能,處理其他倖存者傳來的求救訊號。