如何使用 Cloud Run 作业用于处理视频的 Video Intelligence API

1. 简介

概览

在此 Codelab 中,您将创建一个使用 Node.js 编写的 Cloud Run 作业,用于提供视频中每个场景的直观说明。首先,您的作业将使用 Video Intelligence API 检测每次场景变化的时间戳。接下来,您的作业将使用名为 ffmpeg 的第三方二进制文件捕获每个场景切换时间戳的屏幕截图。最后,Vertex AI 可视化字幕用于提供屏幕截图的视觉说明。

此 Codelab 还演示了如何在 Cloud Run 作业中使用 ffmpeg 从视频中捕获给定时间戳的图片。由于 ffmpeg 需要单独安装,因此此 Codelab 会介绍如何创建一个 Dockerfile,以便在 Cloud Run 作业中安装 ffmpeg。

下图说明了 Cloud Run 作业的工作原理:

Cloud Run 作业视频说明图示

学习内容

  • 如何使用 Dockerfile 创建容器映像以安装第三方二进制文件
  • 如何通过为 Cloud Run 作业创建服务账号来调用其他 Google Cloud 服务来遵循最小权限原则
  • 如何通过 Cloud Run 作业使用 Video Intelligence 客户端库
  • 如何调用 Google API 以获取 Vertex AI 中每个场景的直观描述

2. 设置和要求

前提条件

激活 Cloud Shell

  1. 在 Cloud Console 中,点击激活 Cloud Shelld1264ca30785e435.png

cb81e7c8e34bc8d.png

如果这是您第一次启动 Cloud Shell,系统会显示一个中间屏幕,说明它是什么。如果您看到中间屏幕,请点击继续

d95252b003979716.png

预配和连接到 Cloud Shell 只需花几分钟时间。

7833d5e1c5d18f54

这个虚拟机装有所需的所有开发工具。它提供了一个持久的 5 GB 主目录,并在 Google Cloud 中运行,大大增强了网络性能和身份验证功能。您在此 Codelab 中的大部分(即使不是全部)工作都可以通过浏览器完成。

在连接到 Cloud Shell 后,您应该会看到自己已通过身份验证,并且相关项目已设为您的项目 ID。

  1. 在 Cloud Shell 中运行以下命令以确认您已通过身份验证:
gcloud auth list

命令输出

 Credentialed Accounts
ACTIVE  ACCOUNT
*       <my_account>@<my_domain.com>

To set the active account, run:
    $ gcloud config set account `ACCOUNT`
  1. 在 Cloud Shell 中运行以下命令,以确认 gcloud 命令了解您的项目:
gcloud config list project

命令输出

[core]
project = <PROJECT_ID>

如果不是上述结果,您可以使用以下命令进行设置:

gcloud config set project <PROJECT_ID>

命令输出

Updated property [core/project].

3. 启用 API 并设置环境变量

在开始使用此 Codelab 之前,您需要先启用多个 API。此 Codelab 需要使用以下 API。您可以通过运行以下命令来启用这些 API:

gcloud services enable run.googleapis.com \
    storage.googleapis.com \
    cloudbuild.googleapis.com \
    videointelligence.googleapis.com \
    aiplatform.googleapis.com

然后,您可以设置要在整个 Codelab 中使用的环境变量。

REGION=<YOUR-REGION>
PROJECT_ID=<YOUR-PROJECT-ID>
PROJECT_NUMBER=$(gcloud projects describe $PROJECT_ID --format='value(projectNumber)')
JOB_NAME=video-describer-job
BUCKET_ID=$PROJECT_ID-video-describer
SERVICE_ACCOUNT="cloud-run-job-video"
SERVICE_ACCOUNT_ADDRESS=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com

4. 创建服务账号

您将为 Cloud Run 作业创建一个服务账号,用于访问 Cloud Storage、Vertex AI 和 Video Intelligence API。

首先,创建服务账号。

gcloud iam service-accounts create $SERVICE_ACCOUNT \
  --display-name="Cloud Run Video Scene Image Describer service account"

然后向服务账号授予对 Cloud Storage 存储分区和 Vertex AI API 的访问权限。

# to view & download storage bucket objects
gcloud projects add-iam-policy-binding $PROJECT_ID \
  --member serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
  --role=roles/storage.objectViewer

# to call the Vertex AI imagetext model
gcloud projects add-iam-policy-binding $PROJECT_ID \
  --member serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
  --role=roles/aiplatform.user

5. 创建 Cloud Storage 存储分区

使用以下命令创建一个 Cloud Storage 存储分区,您可以在其中上传视频以供 Cloud Run 作业进行处理:

gsutil mb -l us-central1 gs://$BUCKET_ID/

[可选] 您可以下载此示例视频,将其下载到本地,加以使用。

gsutil cp gs://cloud-samples-data/video/visionapi.mp4 testvideo.mp4

现在,将您的视频文件上传到存储分区中。

FILENAME=<YOUR-VIDEO-FILENAME>
gsutil cp $FILENAME gs://$BUCKET_ID

6. 创建 Cloud Run 作业

首先,为源代码创建一个目录,然后通过 cd 命令进入该目录。

mkdir video-describer-job && cd $_

然后,创建一个包含以下内容的 package.json 文件:

{
  "name": "video-describer-job",
  "version": "1.0.0",
  "private": true,
  "description": "describes the image in every scene for a given video",
  "main": "app.js",
  "author": "Google LLC",
  "license": "Apache-2.0",
  "scripts": {
    "start": "node app.js"
  },
  "dependencies": {
    "@google-cloud/storage": "^7.7.0",
    "@google-cloud/video-intelligence": "^5.0.1",
    "axios": "^1.6.2",
    "fluent-ffmpeg": "^2.1.2",
    "google-auth-library": "^9.4.1"
  }
}

为提高可读性,此应用包含多个源文件。首先,创建一个包含以下内容的 app.js 源文件。此文件包含作业的入口点以及应用的主要逻辑。

const bucketName = "<YOUR_BUCKET_ID>";
const videoFilename = "<YOUR-VIDEO-FILENAME>";

const { captureImages } = require("./helpers/imageCapture.js");
const { detectSceneChanges } = require("./helpers/sceneDetector.js");
const { getImageCaption } = require("./helpers/imageCaptioning.js");
const storageHelper = require("./helpers/storage.js");
const authHelper = require("./helpers/auth.js");

const fs = require("fs").promises;
const path = require("path");

const main = async () => {

    try {

        // download the file to locally to the Cloud Run Job instance
        let localFilename = await storageHelper.downloadVideoFile(
            bucketName,
            videoFilename
        );

        // PART 1 - Use Video Intelligence API
        // detect all the scenes in the video & save timestamps to an array

        // EXAMPLE OUTPUT
        // Detected scene changes at the following timestamps:
        // [1, 7, 11, 12]
        let timestamps = await detectSceneChanges(localFilename);
        console.log(
            "Detected scene changes at the following timestamps: ",
            timestamps
        );

        // PART 2 - Use ffmpeg via dockerfile install
        // create an image of each scene change
        // and save to a local directory called "output"
        // returns the base filename for the generated images

        // EXAMPLE OUTPUT
        // creating screenshot for scene:  1 at output/video-filename-1.png
        // creating screenshot for scene:  7 at output/video-filename-7.png
        // creating screenshot for scene:  11 at output/video-filename-11.png
        // creating screenshot for scene:  12 at output/video-filename-12.png
        // returns the base filename for the generated images
        let imageBaseName = await captureImages(localFilename, timestamps);

        // PART 3a - get Access Token to call Vertex AI APIs via REST
        // needed for the image captioning
        // since we're calling the Vertex AI APIs directly
        let accessToken = await authHelper.getAccessToken();
        console.log("got an access token");

        // PART 3b - use Image Captioning to describe each scene per screenshot
        // EXAMPLE OUTPUT
        /*
        [
            {
                timestamp: 1,
                description:
                    "an aerial view of a city with a bridge in the background"
            },
            {
                timestamp: 7,
                description:
                    "a man in a blue shirt sits in front of shelves of donuts"
            },
            {
                timestamp: 11,
                description:
                    "a black and white photo of people working in a bakery"
            },
            {
                timestamp: 12,
                description:
                    "a black and white photo of a man and woman working in a bakery"
            }
        ]; */

        // instantiate the data structure for storing the scene description and timestamp
        // e.g. an array of json objects,
        // [{ timestamp: 5, description: "..." }, ...]
        let scenes = [];

        // for each timestamp, send the image to Vertex AI
        console.log("getting Vertex AI description for each timestamps");
        scenes = await Promise.all(
            timestamps.map(async (timestamp) => {
                let filepath = path.join(
                    "./output",
                    imageBaseName + "-" + timestamp + ".png"
                );

                // get the base64 encoded image bc sending via REST
                const encodedFile = await fs.readFile(filepath, "base64");

                // send each screenshot to Vertex AI for description
                let description = await getImageCaption(
                    accessToken,
                    encodedFile
                );

                return { timestamp: timestamp, description: description };
            })
        );

        console.log("finished collecting all the scenes");
        console.log(scenes);
    } catch (error) {
        //return an error
        console.error("received error: ", error);
    }
};

// Start script
main().catch((err) => {
    console.error(err);
});

接下来,创建 Dockerfile

# Copyright 2020 Google, LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Use the official lightweight Node.js image.
# https://hub.docker.com/_/node
FROM node:20.10.0-slim

# Create and change to the app directory.
WORKDIR /usr/src/app

RUN apt-get update && apt-get install -y ffmpeg

# Copy application dependency manifests to the container image.
# A wildcard is used to ensure both package.json AND package-lock.json are copied.
# Copying this separately prevents re-running npm install on every code change.
COPY package*.json ./

# Install dependencies.
# If you add a package-lock.json speed your build by switching to 'npm ci'.
# RUN npm ci --only=production
RUN npm install --production

# Copy local code to the container image.
COPY . .

# Run the job on container startup.
CMD [ "npm", "start" ]

创建一个名为 .dockerignore 的文件,以忽略某些文件的容器化。

Dockerfile
.dockerignore
node_modules
npm-debug.log

现在,创建一个名为 helpers 的文件夹。此文件夹将包含 5 个帮助程序文件。

mkdir helpers
cd helpers

接下来,创建一个包含以下内容的 sceneDetector.js 文件。此文件使用 Video Intelligence API 检测视频中的场景何时发生变化。

const fs = require("fs");
const util = require("util");
const readFile = util.promisify(fs.readFile);
const ffmpeg = require("fluent-ffmpeg");

const Video = require("@google-cloud/video-intelligence");
const client = new Video.VideoIntelligenceServiceClient();

module.exports = {
    detectSceneChanges: async function (downloadedFile) {
        // Reads a local video file and converts it to base64
        const file = await readFile(downloadedFile);
        const inputContent = file.toString("base64");

        // setup request for shot change detection
        const videoContext = {
            speechTranscriptionConfig: {
                languageCode: "en-US",
                enableAutomaticPunctuation: true
            }
        };

        const request = {
            inputContent: inputContent,
            features: ["SHOT_CHANGE_DETECTION"]
        };

        // Detects camera shot changes
        const [operation] = await client.annotateVideo(request);
        console.log("Shot (scene) detection in progress...");
        const [operationResult] = await operation.promise();

        // Gets shot changes
        const shotChanges =
            operationResult.annotationResults[0].shotAnnotations;

        console.log(
            "Shot (scene) changes detected: " + shotChanges.length
        );

        // data structure to be returned
        let sceneChanges = [];

        // for the initial scene
        sceneChanges.push(1);

        // if only one scene, keep at 1 second
        if (shotChanges.length === 1) {
            return sceneChanges;
        }

        // get length of video
        const videoLength = await getVideoLength(downloadedFile);

        shotChanges.forEach((shot, shotIndex) => {
            if (shot.endTimeOffset === undefined) {
                shot.endTimeOffset = {};
            }
            if (shot.endTimeOffset.seconds === undefined) {
                shot.endTimeOffset.seconds = 0;
            }
            if (shot.endTimeOffset.nanos === undefined) {
                shot.endTimeOffset.nanos = 0;
            }

            // convert to a number
            let currentTimestampSecond = Number(
                shot.endTimeOffset.seconds
            );

            let sceneChangeTime = 0;
            // double-check no scenes were detected within the last second
            if (currentTimestampSecond + 1 > videoLength) {
                sceneChangeTime = currentTimestampSecond;
            } else {
                // otherwise, for simplicity, just round up to the next second
                sceneChangeTime = currentTimestampSecond + 1;
            }

            sceneChanges.push(sceneChangeTime);
        });

        return sceneChanges;
    }
};

async function getVideoLength(localFile) {
    let getLength = util.promisify(ffmpeg.ffprobe);
    let length = await getLength(localFile);

    console.log("video length: ", length.format.duration);
    return length.format.duration;
}

现在,创建一个名为 imageCapture.js 且包含以下内容的文件。此文件使用节点软件包 fluent-ffmpeg 从节点应用中运行 ffmpeg 命令。

const ffmpeg = require("fluent-ffmpeg");
const path = require("path");
const util = require("util");

module.exports = {
    captureImages: async function (localFile, scenes) {
        let imageBaseName = path.parse(localFile).name;

        try {
            for (scene of scenes) {
                console.log("creating screenshot for scene: ", +scene);
                await createScreenshot(localFile, imageBaseName, scene);
            }
        } catch (error) {
            console.log("error gathering screenshots: ", error);
        }

        console.log("finished gathering the screenshots");
        return imageBaseName; // return the base filename for each image
    }
};

async function createScreenshot(localFile, imageBaseName, scene) {
    return new Promise((resolve, reject) => {
        ffmpeg(localFile)
            .screenshots({
                timestamps: [scene],
                filename: `${imageBaseName}-${scene}.png`,
                folder: "output",
                size: "320x240"
            })
            .on("error", () => {
                console.log(
                    "Failed to create scene for timestamp: " + scene
                );
                return reject(
                    "Failed to create scene for timestamp: " + scene
                );
            })
            .on("end", () => {
                return resolve();
            });
    });
}

最后,创建一个名为 imageCaptioning.js 且包含以下内容的文件。此文件使用 Vertex AI 获取每张场景图片的直观描述。

const axios = require("axios");
const { GoogleAuth } = require("google-auth-library");

const auth = new GoogleAuth({
    scopes: "https://www.googleapis.com/auth/cloud-platform"
});

module.exports = {
    getImageCaption: async function (token, encodedFile) {
        // this example shows you how to call the Vertex REST APIs directly
        // https://cloud.google.com/vertex-ai/generative-ai/docs/image/image-captioning#get-captions-short
        // https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/image-captioning

        let projectId = await auth.getProjectId();

        let config = {
            headers: {
                "Authorization": "Bearer " + token,
                "Content-Type": "application/json; charset=utf-8"
            }
        };

        const json = {
            "instances": [
                {
                    "image": {
                        "bytesBase64Encoded": encodedFile
                    }
                }
            ],
            "parameters": {
                "sampleCount": 1,
                "language": "en"
            }
        };

        let response = await axios.post(
            "https://us-central1-aiplatform.googleapis.com/v1/projects/" +
                projectId +
                "/locations/us-central1/publishers/google/models/imagetext:predict",
            json,
            config
        );

        return response.data.predictions[0];
    }
};

创建名为 auth.js 的文件。 此文件将使用 Google 身份验证客户端库来获取直接调用 Vertex AI 端点所需的访问令牌。

const { GoogleAuth } = require("google-auth-library");

const auth = new GoogleAuth({
    scopes: "https://www.googleapis.com/auth/cloud-platform"
});

module.exports = {
    getAccessToken: async function () {
        return await auth.getAccessToken();
    }
};

最后,创建一个名为 storage.js 的文件。此文件将使用 Cloud Storage 客户端库从 Cloud Storage 下载视频。

const { Storage } = require("@google-cloud/storage");

module.exports = {
    downloadVideoFile: async function (bucketName, videoFilename) {
        // Creates a client
        const storage = new Storage();

        // keep same name locally
        let localFilename = videoFilename;

        const options = {
            destination: localFilename
        };

        // Download the file
        await storage
            .bucket(bucketName)
            .file(videoFilename)
            .download(options);

        console.log(
            `gs://${bucketName}/${videoFilename} downloaded locally to ${localFilename}.`
        );

        return localFilename;
    }
};

7. 部署和执行 Cloud Run 作业

首先,确保您位于此 Codelab 的根目录 video-describer-job 中。

cd .. && pwd

然后,您可以使用此命令部署 Cloud Run 作业。

gcloud run jobs deploy $JOB_NAME  --source . --region $REGION

现在,您可以通过运行以下命令执行 Cloud Run 作业:

gcloud run jobs execute $JOB_NAME

作业执行完毕后,您可以运行以下命令来获取日志 URI 的链接。(或者,您也可以使用 Cloud 控制台并直接转到 Cloud Run 作业来查看日志。)

gcloud run jobs executions describe <JOB_EXECUTION_ID>

您应该会在日志中看到以下输出:

[{ timestamp: 1, description: 'what is google cloud vision api ? is written on a white background .'},
{ timestamp: 3, description: 'a woman wearing a google cloud vision api shirt sits at a table'},
{ timestamp: 18, description: 'a person holding a cell phone with the words what is cloud vision api on the bottom' }, ...]

8. 恭喜!

恭喜您完成此 Codelab!

建议您查看有关 Video Intelligence APICloud RunVertex AI 视觉字幕的文档。

所学内容

  • 如何使用 Dockerfile 创建容器映像以安装第三方二进制文件
  • 如何通过为 Cloud Run 作业创建服务账号来调用其他 Google Cloud 服务来遵循最小权限原则
  • 如何通过 Cloud Run 作业使用 Video Intelligence 客户端库
  • 如何调用 Google API 以获取 Vertex AI 中每个场景的直观描述

9. 清理

为避免产生意外费用(例如,如果此 Cloud Run 作业被意外调用的次数超过免费层级中的每月 Cloud Run 调用次数),您可以删除该 Cloud Run 作业或删除您在第 2 步中创建的项目。

如需删除 Cloud Run 作业,请前往 https://console.cloud.google.com/run/ 前往 Cloud Run Cloud 控制台,然后删除 video-describer-job 函数(如果您使用的是其他名称,则删除 $JOB_NAME)。

如果您选择删除整个项目,可以前往 https://console.cloud.google.com/cloud-resource-manager,选择您在第 2 步中创建的项目,然后选择“删除”。如果删除项目,则需要在 Cloud SDK 中更改项目。您可以通过运行 gcloud projects list 来查看所有可用项目的列表。