סוכן GenAI לאוטומציה של הזמנות מכירה

1. סקירה כללית

תאריך העדכון האחרון: 18 באוקטובר 2024

נכתב על ידי Sanggyu Lee‏ (sanggyulee@google.com)

מה תפַתחו

בקודלאב הזה תלמדו ליצור סוכן GenAI ללקוחות קמעונאיים

האפליקציה שלכם:

  • האפשרות הזו פועלת בנייד או במחשב.
  • אתם יכולים לצלם תמונה של פריט מסוים ולהזמין אותו בצ'אט קולי.
  • כך פועלת האפליקציה: פשוט מצלמים את הפריט ואומרים, לדוגמה, "אני רוצה להזמין 3 קופסאות של זה. אני המנהל של Walmart בהונולולו." האפליקציה מעלה את התמונה ל-Cloud Storage ומעתיקה את ההקלטה הקולית. לאחר מכן, המידע הזה נשלח למודל Gemini ב-Vertex AI, שמזהה את הפריט ואת החנות שלכם (Walmart Honolulu). אם הבקשה עומדת בקריטריונים להזמנת מכירות, המערכת יוצרת הזמנה עם מזהה ייחודי.

c8333d8139d8764c.png

2. מה תלמדו

מה תלמדו

  • איך יוצרים סוכן AI באמצעות Vertex AI
  • איך שולחים אודיו ומקבלים תמלול טקסט משירות Speech-to-Text API
  • איך פורסים את סוכן ה-AI ב-Cloud Run

סדנת הקוד הזו מתמקדת באפליקציות של סוכני GenAI עם Gemini. מושגים וחסימות קוד לא רלוונטיים מוצגים בקצרה, וניתן פשוט להעתיק ולהדביק אותם.

מה צריך להכין

  • חשבון Google Cloud
  • ידע ב-Python, ב-JavaScript וב-Google Cloud

ארכיטקטורה

b21e2a3deedb60ec.png

הסוכן הזה מיועד להזמנות פשוטות יותר באמצעות התכונות של Gemini ל-multimodal עם הנחיות בתמונות ובטקסט. אם ההזמנה נאמרת, מודל Chirp 2 של Google Speech מתרגם אותה לטקסט, שמשמשים לאחר מכן, יחד עם תמונה שסופקה, לשליחת שאילתה למודל Gemini של Vertex AI.

נבנה :

  1. יצירת סביבת פיתוח
  2. אפליקציית Flask שמשתמשים יכולים לקרוא לה דרך נייד או מחשב. האפליקציה תפעל ב-Cloud Run.

3. הגדרה ודרישות

הגדרת סביבה בקצב אישי

  1. נכנסים למסוף Google Cloud ויוצרים פרויקט חדש או משתמשים מחדש בפרויקט קיים. אם עדיין אין לכם חשבון Gmail או חשבון Google Workspace, עליכם ליצור חשבון.

fbef9caa1602edd0.png

97bdebccea2ba4be.png

3e14a8a504bb53ce.png

  • שם הפרויקט הוא השם המוצג של המשתתפים בפרויקט. זוהי מחרוזת תווים שלא משמשת את Google APIs. תמיד אפשר לעדכן אותו.
  • מזהה הפרויקט הוא ייחודי לכל הפרויקטים ב-Google Cloud ואי אפשר לשנות אותו אחרי שמגדירים אותו. מסוף Cloud יוצר מחרוזת ייחודית באופן אוטומטי, ובדרך כלל לא משנה מה המחרוזת הזו. ברוב ה-codelabs תצטרכו להפנות למזהה הפרויקט (בדרך כלל מצוין כ-PROJECT_ID). אם המזהה שנוצר לא מוצא חן בעיניכם, תוכלו ליצור מזהה אקראי אחר. לחלופין, אפשר לנסות כתובת משלכם ולבדוק אם היא זמינה. לא ניתן לשנות את השם אחרי השלב הזה, והוא יישאר למשך כל תקופת הפרויקט.
  • לידיעתך, יש ערך שלישי, מספר פרויקט, שמשתמשים בו בחלק מממשקי ה-API. מידע נוסף על כל שלושת הערכים האלה זמין במסמכי העזרה.
  1. בשלב הבא, תצטרכו להפעיל את החיוב במסוף Cloud כדי להשתמש במשאבים או ב-API של Cloud. השלמת הקודלאב הזה לא תעלה הרבה, אם בכלל. כדי להשבית את המשאבים ולמנוע חיובים אחרי סיום המדריך, אפשר למחוק את המשאבים שיצרתם או למחוק את הפרויקט. משתמשים חדשים ב-Google Cloud זכאים להשתתף בתוכנית תקופת ניסיון בחינם בסך 300$.

הפעלת Cloud Shell

אפשר להפעיל את Google Cloud מרחוק מהמחשב הנייד, אבל בסדנת הקוד הזו נשתמש ב-Google Cloud Shell, סביבת שורת פקודה שפועלת ב-Cloud.

במסוף Google Cloud, לוחצים על סמל Cloud Shell בסרגל הכלים שבפינה הימנית העליונה:

55efc1aaa7a4d3ad.png

תהליך ההקצאה והחיבור לסביבה אמור להימשך רק כמה רגעים. בסיום, אמור להופיע משהו כזה:

7ffe5cbb04455448.png

המכונה הווירטואלית הזו כוללת את כל הכלים הדרושים למפתחים. יש בה ספריית בית בנפח מתמיד של 5GB והיא פועלת ב-Google Cloud, משפרת מאוד את ביצועי הרשת ואת האימות. אתם יכולים לבצע את כל העבודה בקודלאב הזה בדפדפן. אין צורך להתקין שום דבר.

4. לפני שמתחילים

הפעלת ממשקי API

מפעילים את ממשקי ה-API הנדרשים לשיעור ה-Lab. הפעולה הזו תימשך כמה דקות.

gcloud services enable \
  run.googleapis.com \
  cloudbuild.googleapis.com \
  aiplatform.googleapis.com \
  speech.googleapis.com \
  sqladmin.googleapis.com \
  logging.googleapis.com \
  compute.googleapis.com \
  servicenetworking.googleapis.com \
  monitoring.googleapis.com

הפלט הצפוי במסוף :

Operation "operations/acf.p2-639929424533-ffa3a09b-7663-4b31-8f78-5872bf4ad778" finished successfully.

הגדרת הסביבות

לפני הפקודה ב-CLI, מגדירים את הפרמטרים של Google Cloud Environments.

export PROJECT_ID="<YOUR_PROJECT_ID>"
export VPC_NAME="<YOUR_VPC_NAME>" e.g : demonetwork
export SUBNET_NAME="<YOUR_SUBNET_NAME>" e.g : genai-subnet
export REGION="<YOUR_REGION>" e.g : us-central1
export GENAI_BUCKET="<YOUR BUCKET FOR AGENT>" # eg> genai-${PROJECT_ID}

לדוגמה :

export PROJECT_ID=$(gcloud config get-value project)
export VPC_NAME="demonetwork" 
export SUBNET_NAME="genai-subnet" 
export REGION="us-central1" 
export GENAI_BUCKET="genai-${PROJECT_ID}" 

5. פיתוח התשתית

יצירת הרשת לאפליקציה

יוצרים VPC לאפליקציה. כדי ליצור את ה-VPC בשם demonetwork, מריצים את הפקודה :

gcloud compute networks create demonetwork \
    --subnet-mode custom

כדי ליצור את רשת המשנה 'genai-subnet' עם טווח הכתובות 10.10.0.0/24 ברשת 'demonetwork', מריצים את הפקודה:

gcloud compute networks subnets create genai-subnet \
    --network demonetwork \
    --region us-central1 \
    --range 10.10.0.0/24

יצירת מכונות של Cloud SQL ל-PostgreSQL

טווחי כתובות IP שהוקצו לגישה לשירות פרטי.

gcloud compute addresses create google-managed-services-my-network \
    --global \
    --purpose=VPC_PEERING \
    --prefix-length=16 \
    --description="peering range for Google" \
    --network=demonetwork

יוצרים חיבור פרטי.

gcloud services vpc-peerings connect \
    --service=servicenetworking.googleapis.com \
    --ranges=google-managed-services-my-network \
    --network=demonetwork

מריצים את הפקודה gcloud sql instances create כדי ליצור מכונה של Cloud SQL.

gcloud sql instances create sql-retail-genai \
  --database-version POSTGRES_14 \
  --tier db-f1-micro \
  --region=$REGION \
  --project=$PROJECT_ID \
  --network=projects/${PROJECT_ID}/global/networks/${VPC_NAME} \
  --no-assign-ip \
  --enable-google-private-path

השלמת הפקודה הזו עשויה להימשך כמה דקות.

הפלט הצפוי במסוף :

Created [https://sqladmin.googleapis.com/sql/v1beta4/projects/evident-trees-438609-q3/instances/sql-retail-genai].
NAME: sql-retail-genai
DATABASE_VERSION: POSTGRES_14
LOCATION: us-central1-c
TIER: db-f1-micro
PRIMARY_ADDRESS: -
PRIVATE_ADDRESS: 10.66.0.3
STATUS: RUNNABLE

יצירת מסד נתונים לאפליקציה ולמשתמש

מריצים את הפקודה gcloud sql databases create כדי ליצור מסד נתונים של Cloud SQL ב-sql-retail-genai.

gcloud sql databases create retail-orders \
  --instance sql-retail-genai

יוצרים משתמש במסד נתונים של PostgreSQL, ומומלץ לשנות את הסיסמה.

gcloud sql users create aiagent --instance sql-retail-genai --password "genaiaigent2@"

יצירת קטגוריה לאחסון תמונות

יצירת קטגוריה פרטית לסוכנות

gsutil mb -l $REGION gs://$GENAI_BUCKET

עדכון ההרשאות בקטגוריה

gsutil iam ch serviceAccount:<your service account>: roles/storage.objectUser gs://$GENAI_BUCKET

אם נניח שאתם משתמשים בחשבון השירות המוגדר כברירת מחדל ל-Compute :

gsutil iam ch serviceAccount:$(gcloud projects describe $PROJECT_ID --format="value(projectNumber)")-compute@developer.gserviceaccount.com:roles/storage.objectUser gs://$GENAI_BUCKET

6. הכנת קודים לאפליקציה

הכנת הקודים

אפליקציית האינטרנט להזמנת מוצרים נוצרה באמצעות Flask וניתן להריץ אותה בדפדפן אינטרנט בנייד או במחשב. הוא ניגש למיקרופון ולמצלמה של המכשיר המחובר ומשתמש במודל Chirp 2 של Google Speech ובמודל Gemini Pro 1.5 של Vertex AI. תוצאות ההזמנה מאוחסנות במסד נתונים של Cloud SQL.

אם השתמשתם בשמות לדוגמה של משתני הסביבה שצוינו בדף הקודם, תוכלו להשתמש בקוד שבהמשך ללא שינוי. אם התאמתם אישית את השמות של משתני הסביבה, תצטרכו לשנות בהתאם את ערכי חלק מהמשתנים בקוד.

יוצרים שתי ספריות באופן הבא:

mkdir -p genai-agent/templates

יצירת קובץ requirements.txt

vi ~/genai-agent/requirements.txt

מזינים רשימה של חבילות בקובץ הטקסט.

aiofiles==24.1.0
aiohappyeyeballs==2.4.3
aiohttp==3.10.9
aiosignal==1.3.1
annotated-types==0.7.0
asn1crypto==1.5.1
attrs==24.2.0
blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
cffi==1.17.1
charset-normalizer==3.3.2
click==8.1.7
cloud-sql-python-connector==1.12.1
cryptography==43.0.1
docstring_parser==0.16
Flask==3.0.3
frozenlist==1.4.1
google-api-core==2.20.0
google-auth==2.35.0
google-cloud-aiplatform==1.69.0
google-cloud-bigquery==3.26.0
google-cloud-core==2.4.1
google-cloud-resource-manager==1.12.5
google-cloud-speech==2.27.0
google-cloud-storage==2.18.2
google-crc32c==1.6.0
google-resumable-media==2.7.2
googleapis-common-protos==1.65.0
greenlet==3.1.1
grpc-google-iam-v1==0.13.1
grpcio==1.66.2
grpcio-status==1.66.2
idna==3.10
itsdangerous==2.2.0
Jinja2==3.1.4
MarkupSafe==3.0.0
multidict==6.1.0
numpy==2.1.2
packaging==24.1
pg8000==1.31.2
pgvector==0.3.5
proto-plus==1.24.0
protobuf==5.28.2
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycparser==2.22
pydantic==2.9.2
pydantic_core==2.23.4
python-dateutil==2.9.0.post0
requests==2.32.3
rsa==4.9
scramp==1.4.5
shapely==2.0.6
six==1.16.0
SQLAlchemy==2.0.35
typing_extensions==4.12.2
urllib3==2.2.3
Werkzeug==3.0.4
yarl==1.13.1

יצירת קובץ main.py

vi ~/genai-agent/main.py

מזינים את קוד Python בקובץ main.py.

from flask import Flask, render_template, request, jsonify, Response
import os
import base64
from google.api_core.client_options import ClientOptions
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech

import vertexai
from vertexai.generative_models import GenerativeModel, Part, SafetySetting
from google.cloud import storage
import uuid  # Import the uuid module
from typing import Dict  # Add this import
import datetime
import json
import re

import os
from google.cloud.sql.connector import Connector
import pg8000
import sqlalchemy
from sqlalchemy import create_engine, text

app = Flask(__name__)

# Replace with your actual project ID
project_id = os.environ.get("PROJECT_ID")

# Use a connection pool to reuse connections and improve performance
# This also handles connection lifecycle management automatically
engine = None

# Configure Google Cloud Storage
storage_client = storage.Client()
bucket_name = os.environ.get("GENAI_BUCKET")  
client = SpeechClient(
    client_options=ClientOptions(
        api_endpoint="us-central1-speech.googleapis.com",
    ),
)

def get_engine():
    global engine  # Use global to access/modify the global engine variable
    if engine is None:  # Create the engine only once
        connector = Connector()

        def getconn() -> pg8000.dbapi.Connection:
            conn: pg8000.dbapi.Connection = connector.connect(
                os.environ["INSTANCE_CONNECTION_NAME"],  # Cloud SQL instance connection name
                "pg8000",
                user=os.environ["DB_USER"],
                password=os.environ["DB_PASS"],
                db=os.environ["DB_NAME"],
                ip_type="PRIVATE",
            )
            return conn

        engine = create_engine(
            "postgresql+pg8000://",
            creator=getconn,
            pool_pre_ping=True,  # Check connection validity before use
            pool_size=5,  # Adjust pool size as needed
            max_overflow=2, #  Allow some overflow for bursts
            pool_recycle=300, #  Recycle connections after 5 minutes
        )
    return engine

def migrate_db() -> None:
    engine = get_engine()  # Get the engine (creates it if necessary)
    with engine.begin() as conn:
        sql = """
            CREATE TABLE IF NOT EXISTS image_sales_orders (
                order_id SERIAL PRIMARY KEY,
                vendor_name VARCHAR(80) NOT NULL,
                order_item VARCHAR(100) NOT NULL,
                order_boxes INT NOT NULL,  
                time_cast TIMESTAMP NOT NULL
            );
        """
        conn.execute(text(sql))


@app.before_request
def init_db():
    migrate_db()
    #print("Migration complete.")

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/orderlist')
def orderlist():
    engine = get_engine()
    with engine.connect() as conn:
        sql = text("""
            SELECT order_id, vendor_name, order_item, order_boxes, time_cast
            FROM image_sales_orders
            ORDER BY time_cast DESC
        """)
        result = conn.execute(sql).mappings()  # Use .mappings() for dict-like access
        orders = []
        for row in result:
            order = {
                'OrderId': row['order_id'],
                'VendorName': row['vendor_name'],
                'OrderItem': row['order_item'],
                'OrderBoxes': row['order_boxes'],
                'OrderDate': row['time_cast'].strftime('%Y-%m-%d'),
                'OrderTime': row['time_cast'].strftime('%H:%M:%S'),
            }
            orders.append(order)
    return render_template('orderlist.html', orders=orders)

@app.route("/upload_photo", methods=["POST"])
def upload_photo():
    # Get the uploaded file
    file = request.files["photo"]

    # Generate a unique filename
    filename = f"{uuid.uuid4()}--{file.filename}"

    # Upload the file to Google Cloud Storage
    bucket = storage_client.get_bucket(bucket_name)
    blob = bucket.blob(filename)
    generation_match_precondition = 0
    blob.upload_from_file(file, if_generation_match=generation_match_precondition)

    # Return the destination filename
    image_url = f"gs://{bucket_name}/{filename}"

    # Return the destination filename
    return image_url

@app.route('/upload', methods=['POST'])
def upload():
    audio_data = request.form['audio_data']
    audio_data = base64.b64decode(audio_data.split(',')[1])

    audio_path = f"{uuid.uuid4()}--audio.wav" 

    with open(audio_path, 'wb') as f:
        f.write(audio_data)

    transcript = transcribe_speech(audio_path)
    os.remove(audio_path)
    return jsonify({'transcript': transcript})

@app.route("/orders", methods=["POST"])
def cast_order() -> Response:
    prompt = request.form['transcript']
    image_url = request.form['image_url']
    print(f"Prompt: {prompt}")
    print(f"Image URL: {image_url}")

    model_response = generate(image_url=image_url, prompt=prompt)
    # Extract the text content from the model response
    response_text = model_response.text if hasattr(model_response, 'text') else str(model_response)

    #print(f"Response from Model !!!!!!: {response_text}")

    try:
        response_json = json.loads(response_text)
        function_name = response_json.get("function")
        parameters = response_json.get("parameters")

    except json.JSONDecodeError as e:
        logging.error(f"JSON decoding error: {e}")
        return Response(
            "I cannot fulfill your request because I cannot find the [Product Name], [Quantity (Box)], and [Retail Store Name] in the provided image and prompt.",
            status=500
        )

    if function_name == 'Z_SALES_ORDER_SRV/orderlistSet':
        engine = get_engine()
        with engine.connect() as conn:
            try:
                # Explicitly convert order_boxes to integer
                order_boxes = int(parameters["order_boxes"])
                vendor_name = parameters["vendor_name"]
                order_item = parameters["order_item"]

                # Prepare the SQL statement
                sql = text("""
                    INSERT INTO image_sales_orders (vendor_name, order_item, order_boxes, time_cast)
                    VALUES (:vendor_name, :order_item, :order_boxes, NOW())
                """)

                # Prepare parameters
                params = {
                    "vendor_name": vendor_name,
                    "order_item": order_item,
                    "order_boxes": order_boxes,
                }

                # Execute the SQL statement with parameters
                conn.execute(sql, params)
                conn.commit()

                response_message = f"Dear [{vendor_name}],\n\nYour order has been completed as follows. \n\nItem Name : {order_item}\nQTY(Boxes) : {order_boxes}\n\nThanks."
                return Response(response_message, status=200)

            except (KeyError, ValueError) as e:
                logging.error(f"Error inserting into database: {e}")
                response_message = "Error processing your order. Please check the input data."
                return Response(response_message, status=500)

    else:
        # Handle other function names if necessary
        return Response("Unknown function.", status=400)


def transcribe_speech(audio_file):
    with open(audio_file, "rb") as f:
        content = f.read()

    config = cloud_speech.RecognitionConfig(
        auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
        language_codes=["auto"],
        #language_codes=["ko-KR"],    -- In case that needs to choose specific language 
        model="chirp_2",
    )

    request = cloud_speech.RecognizeRequest(
        recognizer=f"projects/{project_id}/locations/us-central1/recognizers/_",
        config=config,
        content=content,
    )

    response = client.recognize(request=request)

    transcript = ""
    for result in response.results:
        transcript += result.alternatives[0].transcript

    return transcript

if __name__ == '__main__':
    app.run(debug=True, host="0.0.0.0", port=int(os.environ.get("PORT", 8080)))
    #app.run(debug=True)

def generate(image_url,prompt):
    vertexai.init(project=project_id, location="us-central1")
    model = GenerativeModel("gemini-1.5-pro-002")
    image1 = Part.from_uri(uri=image_url, mime_type="image/jpeg")

    prompt_default = """A retail store will give you an image with order details as an Input. You will identify the order details and provide an output as the following json format. You should not add any comment on it. The Box quantity should be arabic number. You can extract the item name from a given image or prompt. However, you should extract the retail store name or the quantity from only the text prompt but not the given image. All parameter values are strings. Don't assume any parameters. Do not wrap the json codes in JSON markers.

{\"function\":\"Z_SALES_ORDER_SRV/orderlistSet\",\"parameters\":{\"vendor_name\":Retail store name,\"order_item\":Item name,\"order_boxes\":Box quantity}}

If you are not clear on any parameter, provide the output as follows.
{\"function\":\"None\"}

You should not use the json markdown for the result.

Input :"""

    generation_config = {
        "max_output_tokens": 8192,
        "temperature": 0,
        "top_p": 0.95,
    }

    safety_settings = [
        SafetySetting(
            category=SafetySetting.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
            threshold=SafetySetting.HarmBlockThreshold.OFF
        ),
        SafetySetting(
            category=SafetySetting.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
            threshold=SafetySetting.HarmBlockThreshold.OFF
        ),
        SafetySetting(
            category=SafetySetting.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
            threshold=SafetySetting.HarmBlockThreshold.OFF
        ),
        SafetySetting(
            category=SafetySetting.HarmCategory.HARM_CATEGORY_HARASSMENT,
            threshold=SafetySetting.HarmBlockThreshold.OFF
        ),
    ]

    responses = model.generate_content(
        [prompt_default, image1, prompt],
        generation_config=generation_config,
        safety_settings=safety_settings,
        stream=True,
    )

    response = ""
    for content in responses:
       response += content.text
       print(f"Content: {content}")
       print(f"Content type: {type(content)}")
       print(f"Content attributes: {dir(content)}")

    print(f"response_texts={response}")

    if response.startswith('json'):
       return clean_json_string(response)
    else:
       return response

def clean_json_string(json_string):
    pattern = r'^```json\s*(.*?)\s*```$'
    cleaned_string = re.sub(pattern, r'\1', json_string, flags=re.DOTALL)
    return cleaned_string.strip()

יצירת index.html

vi ~/genai-agent/templates/index.html

מזינים קוד HTML בקובץ index.html.

<!DOCTYPE html>
<html>
<head>
    <title>GenAI Agent for Retail</title>
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <style>
        /* Styles adjusted for chatbot interface */
        body {
            font-family: Arial, sans-serif;
            background-color: #343541;
            margin: 0;
            padding: 0;
            display: flex;
            flex-direction: column;
            height: 100vh;
        }

        .chat-container {
            flex: 1;
            overflow-y: auto;
            padding: 10px;
            background-color: #343541;
        }

        .message {
            max-width: 80%;
            margin-bottom: 15px;
            padding: 10px;
            border-radius: 10px;
            color: #dcdcdc;
            word-wrap: break-word;
        }

        .user-message {
            background-color: #3e3f4b;
            align-self: flex-end;
        }

        .assistant-message {
            background-color: #444654;
            align-self: flex-start;
        }

        .message-input {
            padding: 10px;
            background-color: #40414f;
            display: flex;
            align-items: center;
        }

        .message-input textarea {
            flex: 1;
            padding: 10px;
            border: none;
            border-radius: 5px;
            resize: none;
            background-color: #40414f;
            color: #dcdcdc;
            height: 40px;
            max-height: 100px;
            overflow-y: auto;
        }

        .message-input button {
            padding: 15px;
            margin-left: 5px;
            background-color: #19c37d;
            border: none;
            border-radius: 5px;
            color: white;
            font-weight: bold;
            cursor: pointer;
            flex-shrink: 0;
        }

        .image-preview {
            max-width: 100%;
            border-radius: 10px;
            margin-bottom: 10px;
        }

        .hidden {
            display: none;
        }

        /* Media queries for responsive design */
        @media screen and (max-width: 600px) {
            .message {
                max-width: 100%;
            }

            .message-input {
                flex-direction: column;
            }

            .message-input textarea {
                width: 100%;
                margin-bottom: 10px;
            }

            .message-input button {
                width: 100%;
                margin: 5px 0;
            }
        }
    </style>
</head>
<body>
    <div class="chat-container" id="chat-container">
        <!-- Messages will be appended here -->
    </div>

    <div class="message-input">
        <input type="file" name="photo" id="photo" accept="image/*" capture="camera" class="hidden">
        <button id="uploadImageButton">📷</button>
        <button id="recordButton">🎤</button>
        <textarea id="transcript" rows="1" placeholder="Enter a message here by voice or typing..."></textarea>
        <button id="sendButton">Send</button>
    </div>

    <script>
        const chatContainer = document.getElementById('chat-container');
        const transcriptInput = document.getElementById('transcript');
        const sendButton = document.getElementById('sendButton');
        const recordButton = document.getElementById('recordButton');
        const uploadImageButton = document.getElementById('uploadImageButton');
        const photoInput = document.getElementById('photo');

        let mediaRecorder;
        let audioChunks = [];
        let imageUrl = '';

        function appendMessage(content, sender) {
            const messageDiv = document.createElement('div');
            messageDiv.classList.add('message', sender === 'user' ? 'user-message' : 'assistant-message');

            if (typeof content === 'string') {
                const messageContent = document.createElement('p');
                messageContent.innerText = content;
                messageDiv.appendChild(messageContent);
            } else {
                messageDiv.appendChild(content);
            }

            chatContainer.appendChild(messageDiv);
            chatContainer.scrollTop = chatContainer.scrollHeight;
        }

        sendButton.addEventListener('click', () => {
            const message = transcriptInput.value.trim();
            if (message !== '') {
                appendMessage(message, 'user');

                // Prepare form data
                const formData = new FormData();
                formData.append('transcript', message);
                formData.append('image_url', imageUrl);

                // Send the message to the server
                fetch('/orders', {
                    method: 'POST',
                    body: formData
                })
                .then(response => response.text())
                .then(data => {
                    appendMessage(data, 'assistant');
                    // Reset imageUrl after sending
                    imageUrl = '';
                })
                .catch(error => {
                    console.error('Error:', error);
                });

                transcriptInput.value = '';
            }
        });

        transcriptInput.addEventListener('keypress', (e) => {
            if (e.key === 'Enter' && !e.shiftKey) {
                e.preventDefault();
                sendButton.click();
            }
        });

        recordButton.addEventListener('click', async () => {
            if (mediaRecorder && mediaRecorder.state === 'recording') {
                mediaRecorder.stop();
                recordButton.innerText = '🎤';
                return;
            }

            let stream = await navigator.mediaDevices.getUserMedia({ audio: true });
            mediaRecorder = new MediaRecorder(stream);
            mediaRecorder.start();
            recordButton.innerText = '⏹️';

            mediaRecorder.ondataavailable = event => {
                audioChunks.push(event.data);
            };

            mediaRecorder.onstop = async () => {
                let audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
                audioChunks = [];

                let reader = new FileReader();
                reader.readAsDataURL(audioBlob);
                reader.onloadend = () => {
                    let base64String = reader.result;

                    // Send the audio data to the server
                    fetch('/upload', {
                        method: 'POST',
                        headers: {
                            'Content-Type': 'application/x-www-form-urlencoded'
                        },
                        body: 'audio_data=' + encodeURIComponent(base64String)
                    })
                    .then(response => response.json())
                    .then(data => {
                        transcriptInput.value = data.transcript;
                    })
                    .catch(error => {
                        console.error('Error:', error);
                    });
                };
            };
        });

        uploadImageButton.addEventListener('click', () => {
            photoInput.click();
        });

        photoInput.addEventListener('change', function() {
            if (photoInput.files && photoInput.files[0]) {
                const file = photoInput.files[0];
                const reader = new FileReader();
                reader.onload = function(e) {
                    const img = document.createElement('img');
                    img.src = e.target.result;
                    img.classList.add('image-preview');
                    appendMessage(img, 'user');
                };
                reader.readAsDataURL(file);

                const formData = new FormData();
                formData.append('photo', photoInput.files[0]);

                // Upload the image to the server
                fetch('/upload_photo', {
                    method: 'POST',
                    body: formData,
                })
                .then(response => response.text())
                .then(url => {
                    imageUrl = url;
                })
                .catch(error => {
                    console.error('Error uploading photo:', error);
                });
            }
        });
    </script>
</body>
</html>

יצירת קובץ orderlist.html

vi ~/genai-agent/templates/orderlist.html

מזינים קוד HTML בקובץ orderlist.html.

<!DOCTYPE html>
<html>
<head>
    <title>Order List</title>
    <style>
        body {
            font-family: sans-serif;
            line-height: 1.6;
            margin: 20px;
            background-color: #f4f4f4;
            color: #333;
        }

        h1 {
            text-align: center;
            color: #28a745; /* Green header */
        }

        table {
            width: 100%;
            border-collapse: collapse;
            margin-top: 20px;
            box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Add a subtle shadow */
        }

        th, td {
            padding: 12px 15px;
            text-align: left;
            border-bottom: 1px solid #ddd;
        }

        th {
            background-color: #28a745; /* Green header background */
            color: white;
        }

        tr:nth-child(even) {
            background-color: #f8f9fa; /* Alternating row color */
        }

        tr:hover {
            background-color: #e9ecef; /* Hover effect */
        }

    </style>
</head>
<body>
    <h1>Order List</h1>
    <table>
        <thead>
            <tr>
                <th>Order ID</th>
                <th>Retail Store Name</th>
                <th>Order Item</th>
                <th>Order Boxes</th>
                <th>Order Date</th>
                <th>Order Time</th>
            </tr>
        </thead>
        <tbody>
            {% for order in orders %}
            <tr>
                <td>{{ order.OrderId }}</td>
                <td>{{ order.VendorName }}</td>
                <td>{{ order.OrderItem }}</td>
                <td>{{ order.OrderBoxes }}</td>
                <td>{{ order.OrderDate }}</td>
                <td>{{ order.OrderTime }}</td>
            </tr>
            {% endfor %}
        </tbody>
    </table>
</body>
</html>

7. פריסת אפליקציית Flask ב-Cloud Run

בספרייה genai-agent, מריצים את הפקודה הבאה כדי לפרוס את האפליקציה ב-Cloud Run:

cd ~/genai-agent
gcloud run deploy --source . genai-agent-sales-order \
--set-env-vars=PROJECT_ID=$PROJECT_ID \
--set-env-vars=REGION=$REGION \
--set-env-vars=INSTANCE_CONNECTION_NAME="${PROJECT_ID}:${REGION}:sql-retail-genai" \
--set-env-vars=DB_USER=aiagent \
--set-env-vars=DB_PASS=genaiaigent2@ \
--set-env-vars=DB_NAME=retail-orders \
--set-env-vars=GENAI_BUCKET=$GENAI_BUCKET \
--network=$PROJECT_ID \
--subnet=$SUBNET_NAME \
--vpc-egress=private-ranges-only \
--region=$REGION \
--allow-unauthenticated

הפלט הצפוי :

Deploying from source requires an Artifact Registry Docker repository to store built containers. A repository named [cloud-run-source-deploy] in region [us-central1] will be created.

Do you want to continue (Y/n)?  Y

הפעולה הזו תימשך כמה דקות, ואם היא תסתיים בהצלחה, תופיע כתובת ה-URL של השירות.

הפלט הצפוי :

..........
Building using Buildpacks and deploying container to Cloud Run service [genai-agent-sales-order] in project [xxxx] region [us-central1]
✓ Building and deploying... Done.                                                                                                                                                                                                                                                                                                                               
  ✓ Uploading sources...                                                                                                                                                                                                                                                                                                                                        
  ✓ Building Container... Logs are available at [https://console.cloud.google.com/cloud-build/builds/395d141c-2dcf-465d-acfb-f97831c448c3?project=xxxx].                                                                                                                                                                                                
  ✓ Creating Revision...                                                                                                                                                                                                                                                                                                                                        
  ✓ Routing traffic...                                                                                                                                                                                                                                                                                                                                          
  ✓ Setting IAM Policy...                                                                                                                                                                                                                                                                                                                                       
Done.                                                                                                                                                                                                                                                                                                                                                           
Service [genai-agent-sales-order] revision [genai-agent-sales-order-00013-ckp] has been deployed and is serving 100 percent of traffic.
Service URL: https://genai-agent-sales-order-xxxx.us-central1.run.app

אפשר גם לבדוק את כתובת ה-URL של השירות במסוף Cloud Run.

8. בדיקה

  1. מקלידים את כתובת ה-URL של השירות שנוצרה בשלב הקודם של הפריסה ב-Cloud Run בנייד או במחשב הנייד.
  2. מצלמים תמונה של פריט מההזמנה ומזינים את כמות ההזמנה(קופסאות) ואת שם החנות הקמעונאית באמצעות הקלדה או קול. <ex> "I want to order this three boxes. סליחה, שבע קופסאות. This is Walmart Mountain Vew"
  3. לוחצים על 'שליחה' ובודקים אם ההזמנה הושלמה.
  4. אפשר לבדוק את היסטוריית ההזמנות בכתובת {Service URL}/orderlist

de0db1a08082c634.png

9. מזל טוב

מעולה! יצרתם סוכן GenAI שיכול להפוך תהליכים עסקיים לאוטומטיים באמצעות Gemini ב-Vertex AI עם יכולות multimodal.

אני מחכה לראות איך תשנו את ההנחיות ותתאימו את הנציג לצרכים הספציפיים שלכם.