1. Ringkasan
Terakhir Diperbarui: 18-10-2024
Ditulis oleh Sanggyu Lee (sanggyulee@google.com)
Yang akan Anda bangun
Dalam codelab ini, Anda akan mem-build agen GenAI untuk pelanggan retail
Aplikasi Anda akan:
- Fitur ini berfungsi di perangkat seluler atau desktop.
- Anda dapat mengambil foto untuk item dan memesannya dengan chat suara.
- Berikut cara kerja aplikasi ini: Anda cukup mengambil foto item dan mengucapkan, misalnya, "Saya ingin memesan ini, 3 kotak. Saya adalah manajer di Walmart Honolulu." Aplikasi akan mengupload foto ke Cloud Storage dan mentranskripsikan rekaman suara Anda. Informasi ini kemudian dikirim ke model Gemini di Vertex AI, yang mengidentifikasi item dan toko Anda (Walmart Honolulu). Jika permintaan memenuhi kriteria pesanan penjualan, sistem akan membuat pesanan penjualan dengan ID unik.
2. Yang akan Anda pelajari
Yang akan Anda pelajari
- Cara membuat agen AI dengan Vertex AI
- Cara mengirim audio dan menerima transkripsi teks dari layanan Speech-to-Text API
- Cara men-deploy agen AI di Cloud Run
Codelab ini berfokus pada aplikasi agen GenAI dengan Gemini. Konsep dan blok kode yang tidak relevan akan dibahas sekilas dan disediakan, jadi Anda cukup menyalin dan menempelkannya.
Yang Anda butuhkan
- Akun Google Cloud
- Pengetahuan tentang Python, JavaScript, dan Google Cloud
Arsitektur
Agen ini ditujukan untuk pemesanan yang disederhanakan menggunakan fitur multi-modalitas Gemini dengan perintah gambar dan teks. Jika perintah diucapkan, model Chirp 2 Google Speech akan mentranskripsikannya ke teks, yang kemudian digunakan, bersama dengan gambar yang diberikan, untuk membuat kueri model Gemini Vertex AI.
Kita akan membuat :
- Membuat lingkungan pengembangan
- Aplikasi Flask yang akan dipanggil oleh pengguna melalui perangkat seluler atau PC. Aplikasi akan berjalan di Cloud Run.
3. Penyiapan dan Persyaratan
Penyiapan lingkungan mandiri
- Login ke Google Cloud Console dan buat project baru atau gunakan kembali project yang sudah ada. Jika belum memiliki akun Gmail atau Google Workspace, Anda harus membuatnya.
- Project name adalah nama tampilan untuk peserta project ini. String ini adalah string karakter yang tidak digunakan oleh Google API. Anda dapat memperbaruinya kapan saja.
- Project ID bersifat unik di semua project Google Cloud dan tidak dapat diubah (tidak dapat diubah setelah ditetapkan). Cloud Console otomatis membuat string unik; biasanya Anda tidak mementingkan kata-katanya. Di sebagian besar codelab, Anda harus merujuk Project ID-nya (umumnya diidentifikasi sebagai PROJECT_ID). Jika tidak menyukai ID yang dihasilkan, Anda dapat membuat ID acak lainnya. Atau, Anda dapat mencobanya sendiri, dan lihat apakah ID tersebut tersedia. ID tidak dapat diubah setelah langkah ini dan tersedia selama durasi project.
- Sebagai informasi, ada nilai ketiga, Project Number, yang digunakan oleh beberapa API. Pelajari lebih lanjut ketiga nilai ini di dokumentasi.
- Selanjutnya, Anda harus mengaktifkan penagihan di Konsol Cloud untuk menggunakan resource/API Cloud. Menjalankan operasi dalam codelab ini tidak akan memakan banyak biaya, bahkan mungkin tidak sama sekali. Guna mematikan resource agar tidak menimbulkan penagihan di luar tutorial ini, Anda dapat menghapus resource yang dibuat atau menghapus project-nya. Pengguna baru Google Cloud memenuhi syarat untuk mengikuti program Uji Coba Gratis senilai $300 USD.
Mulai Cloud Shell
Meskipun Google Cloud dapat dioperasikan dari jarak jauh menggunakan laptop Anda, dalam codelab ini, Anda akan menggunakan Google Cloud Shell, lingkungan command line yang berjalan di Cloud.
Dari Google Cloud Console, klik ikon Cloud Shell di toolbar kanan atas:
Hanya perlu waktu beberapa saat untuk penyediaan dan terhubung ke lingkungan. Jika sudah selesai, Anda akan melihat tampilan seperti ini:
Mesin virtual ini berisi semua alat pengembangan yang Anda perlukan. Layanan ini menawarkan direktori beranda tetap sebesar 5 GB dan beroperasi di Google Cloud, sehingga sangat meningkatkan performa dan autentikasi jaringan. Semua pekerjaan Anda dalam codelab ini dapat dilakukan di browser. Anda tidak perlu menginstal apa pun.
4. Sebelum memulai
Mengaktifkan API
Aktifkan API yang diperlukan untuk lab. Proses ini memerlukan waktu beberapa menit.
gcloud services enable \ run.googleapis.com \ cloudbuild.googleapis.com \ aiplatform.googleapis.com \ speech.googleapis.com \ sqladmin.googleapis.com \ logging.googleapis.com \ compute.googleapis.com \ servicenetworking.googleapis.com \ monitoring.googleapis.com
Output konsol yang diharapkan :
Operation "operations/acf.p2-639929424533-ffa3a09b-7663-4b31-8f78-5872bf4ad778" finished successfully.
Menyiapkan Lingkungan
Sebelum perintah CLI menyiapkan parameter untuk Lingkungan Google Cloud.
export PROJECT_ID="<YOUR_PROJECT_ID>" export VPC_NAME="<YOUR_VPC_NAME>" e.g : demonetwork export SUBNET_NAME="<YOUR_SUBNET_NAME>" e.g : genai-subnet export REGION="<YOUR_REGION>" e.g : us-central1 export GENAI_BUCKET="<YOUR BUCKET FOR AGENT>" # eg> genai-${PROJECT_ID}
For example :
export PROJECT_ID=$(gcloud config get-value project) export VPC_NAME="demonetwork" export SUBNET_NAME="genai-subnet" export REGION="us-central1" export GENAI_BUCKET="genai-${PROJECT_ID}"
5. Membangun infrastruktur
Membuat Jaringan untuk aplikasi Anda
Buat VPC untuk aplikasi Anda. Untuk membuat VPC dengan nama "demonetwork", jalankan :
gcloud compute networks create demonetwork \ --subnet-mode custom
Untuk membuat subnetwork "genai-subnet" dengan rentang alamat 10.10.0.0/24 di jaringan "demonetwork", jalankan:
gcloud compute networks subnets create genai-subnet \ --network demonetwork \ --region us-central1 \ --range 10.10.0.0/24
Membuat Cloud SQL untuk PostgreSQL
Rentang alamat IP yang dialokasikan untuk akses layanan pribadi.
gcloud compute addresses create google-managed-services-my-network \ --global \ --purpose=VPC_PEERING \ --prefix-length=16 \ --description="peering range for Google" \ --network=demonetwork
Membuat koneksi pribadi
gcloud services vpc-peerings connect \ --service=servicenetworking.googleapis.com \ --ranges=google-managed-services-my-network \ --network=demonetwork
Jalankan perintah gcloud sql instances create untuk membuat instance Cloud SQL.
gcloud sql instances create sql-retail-genai \ --database-version POSTGRES_14 \ --tier db-f1-micro \ --region=$REGION \ --project=$PROJECT_ID \ --network=projects/${PROJECT_ID}/global/networks/${VPC_NAME} \ --no-assign-ip \ --enable-google-private-path
Pemrosesan perintah ini dapat memerlukan waktu beberapa menit.
Output konsol yang diharapkan :
Created [https://sqladmin.googleapis.com/sql/v1beta4/projects/evident-trees-438609-q3/instances/sql-retail-genai]. NAME: sql-retail-genai DATABASE_VERSION: POSTGRES_14 LOCATION: us-central1-c TIER: db-f1-micro PRIMARY_ADDRESS: - PRIVATE_ADDRESS: 10.66.0.3 STATUS: RUNNABLE
Membuat database untuk aplikasi dan pengguna
Jalankan perintah gcloud sql databases create untuk membuat database Cloud SQL dalam sql-retail-genai.
gcloud sql databases create retail-orders \ --instance sql-retail-genai
Buat pengguna database PostgreSQL, sebaiknya ubah sandinya.
gcloud sql users create aiagent --instance sql-retail-genai --password "genaiaigent2@"
Membuat bucket untuk menyimpan gambar
Membuat bucket pribadi untuk agen Anda
gsutil mb -l $REGION gs://$GENAI_BUCKET
Memperbarui izin Bucket
gsutil iam ch serviceAccount:<your service account>: roles/storage.objectUser gs://$GENAI_BUCKET
Jika Anda ingin menggunakan akun layanan komputasi default :
gsutil iam ch serviceAccount:$(gcloud projects describe $PROJECT_ID --format="value(projectNumber)")-compute@developer.gserviceaccount.com:roles/storage.objectUser gs://$GENAI_BUCKET
6. Menyiapkan kode untuk aplikasi Anda
Menyiapkan kode
Aplikasi web untuk melakukan pemesanan dibuat menggunakan Flask dan dapat dijalankan di browser web di perangkat seluler atau PC. Aplikasi ini mengakses mikrofon dan kamera perangkat yang terhubung serta menggunakan model Chirp 2 Google Speech dan model Gemini Pro 1.5 Vertex AI. Hasil pesanan disimpan di database Cloud SQL.
Jika menggunakan contoh nama variabel lingkungan yang diberikan di halaman sebelumnya, Anda dapat menggunakan kode di bawah tanpa modifikasi. Jika telah menyesuaikan nama variabel lingkungan, Anda harus mengubah beberapa nilai variabel dalam kode.
Buat dua direktori sebagai berikut.
mkdir -p genai-agent/templates
Membuat requirements.txt
vi ~/genai-agent/requirements.txt
Masukkan daftar paket ke dalam file teks.
aiofiles==24.1.0
aiohappyeyeballs==2.4.3
aiohttp==3.10.9
aiosignal==1.3.1
annotated-types==0.7.0
asn1crypto==1.5.1
attrs==24.2.0
blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
cffi==1.17.1
charset-normalizer==3.3.2
click==8.1.7
cloud-sql-python-connector==1.12.1
cryptography==43.0.1
docstring_parser==0.16
Flask==3.0.3
frozenlist==1.4.1
google-api-core==2.20.0
google-auth==2.35.0
google-cloud-aiplatform==1.69.0
google-cloud-bigquery==3.26.0
google-cloud-core==2.4.1
google-cloud-resource-manager==1.12.5
google-cloud-speech==2.27.0
google-cloud-storage==2.18.2
google-crc32c==1.6.0
google-resumable-media==2.7.2
googleapis-common-protos==1.65.0
greenlet==3.1.1
grpc-google-iam-v1==0.13.1
grpcio==1.66.2
grpcio-status==1.66.2
idna==3.10
itsdangerous==2.2.0
Jinja2==3.1.4
MarkupSafe==3.0.0
multidict==6.1.0
numpy==2.1.2
packaging==24.1
pg8000==1.31.2
pgvector==0.3.5
proto-plus==1.24.0
protobuf==5.28.2
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycparser==2.22
pydantic==2.9.2
pydantic_core==2.23.4
python-dateutil==2.9.0.post0
requests==2.32.3
rsa==4.9
scramp==1.4.5
shapely==2.0.6
six==1.16.0
SQLAlchemy==2.0.35
typing_extensions==4.12.2
urllib3==2.2.3
Werkzeug==3.0.4
yarl==1.13.1
Membuat main.py
vi ~/genai-agent/main.py
Masukkan kode python ke dalam file main.py.
from flask import Flask, render_template, request, jsonify, Response
import os
import base64
from google.api_core.client_options import ClientOptions
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech
import vertexai
from vertexai.generative_models import GenerativeModel, Part, SafetySetting
from google.cloud import storage
import uuid # Import the uuid module
from typing import Dict # Add this import
import datetime
import json
import re
import os
from google.cloud.sql.connector import Connector
import pg8000
import sqlalchemy
from sqlalchemy import create_engine, text
app = Flask(__name__)
# Replace with your actual project ID
project_id = os.environ.get("PROJECT_ID")
# Use a connection pool to reuse connections and improve performance
# This also handles connection lifecycle management automatically
engine = None
# Configure Google Cloud Storage
storage_client = storage.Client()
bucket_name = os.environ.get("GENAI_BUCKET")
client = SpeechClient(
client_options=ClientOptions(
api_endpoint="us-central1-speech.googleapis.com",
),
)
def get_engine():
global engine # Use global to access/modify the global engine variable
if engine is None: # Create the engine only once
connector = Connector()
def getconn() -> pg8000.dbapi.Connection:
conn: pg8000.dbapi.Connection = connector.connect(
os.environ["INSTANCE_CONNECTION_NAME"], # Cloud SQL instance connection name
"pg8000",
user=os.environ["DB_USER"],
password=os.environ["DB_PASS"],
db=os.environ["DB_NAME"],
ip_type="PRIVATE",
)
return conn
engine = create_engine(
"postgresql+pg8000://",
creator=getconn,
pool_pre_ping=True, # Check connection validity before use
pool_size=5, # Adjust pool size as needed
max_overflow=2, # Allow some overflow for bursts
pool_recycle=300, # Recycle connections after 5 minutes
)
return engine
def migrate_db() -> None:
engine = get_engine() # Get the engine (creates it if necessary)
with engine.begin() as conn:
sql = """
CREATE TABLE IF NOT EXISTS image_sales_orders (
order_id SERIAL PRIMARY KEY,
vendor_name VARCHAR(80) NOT NULL,
order_item VARCHAR(100) NOT NULL,
order_boxes INT NOT NULL,
time_cast TIMESTAMP NOT NULL
);
"""
conn.execute(text(sql))
@app.before_request
def init_db():
migrate_db()
#print("Migration complete.")
@app.route('/')
def index():
return render_template('index.html')
@app.route('/orderlist')
def orderlist():
engine = get_engine()
with engine.connect() as conn:
sql = text("""
SELECT order_id, vendor_name, order_item, order_boxes, time_cast
FROM image_sales_orders
ORDER BY time_cast DESC
""")
result = conn.execute(sql).mappings() # Use .mappings() for dict-like access
orders = []
for row in result:
order = {
'OrderId': row['order_id'],
'VendorName': row['vendor_name'],
'OrderItem': row['order_item'],
'OrderBoxes': row['order_boxes'],
'OrderDate': row['time_cast'].strftime('%Y-%m-%d'),
'OrderTime': row['time_cast'].strftime('%H:%M:%S'),
}
orders.append(order)
return render_template('orderlist.html', orders=orders)
@app.route("/upload_photo", methods=["POST"])
def upload_photo():
# Get the uploaded file
file = request.files["photo"]
# Generate a unique filename
filename = f"{uuid.uuid4()}--{file.filename}"
# Upload the file to Google Cloud Storage
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(filename)
generation_match_precondition = 0
blob.upload_from_file(file, if_generation_match=generation_match_precondition)
# Return the destination filename
image_url = f"gs://{bucket_name}/{filename}"
# Return the destination filename
return image_url
@app.route('/upload', methods=['POST'])
def upload():
audio_data = request.form['audio_data']
audio_data = base64.b64decode(audio_data.split(',')[1])
audio_path = f"{uuid.uuid4()}--audio.wav"
with open(audio_path, 'wb') as f:
f.write(audio_data)
transcript = transcribe_speech(audio_path)
os.remove(audio_path)
return jsonify({'transcript': transcript})
@app.route("/orders", methods=["POST"])
def cast_order() -> Response:
prompt = request.form['transcript']
image_url = request.form['image_url']
print(f"Prompt: {prompt}")
print(f"Image URL: {image_url}")
model_response = generate(image_url=image_url, prompt=prompt)
# Extract the text content from the model response
response_text = model_response.text if hasattr(model_response, 'text') else str(model_response)
#print(f"Response from Model !!!!!!: {response_text}")
try:
response_json = json.loads(response_text)
function_name = response_json.get("function")
parameters = response_json.get("parameters")
except json.JSONDecodeError as e:
logging.error(f"JSON decoding error: {e}")
return Response(
"I cannot fulfill your request because I cannot find the [Product Name], [Quantity (Box)], and [Retail Store Name] in the provided image and prompt.",
status=500
)
if function_name == 'Z_SALES_ORDER_SRV/orderlistSet':
engine = get_engine()
with engine.connect() as conn:
try:
# Explicitly convert order_boxes to integer
order_boxes = int(parameters["order_boxes"])
vendor_name = parameters["vendor_name"]
order_item = parameters["order_item"]
# Prepare the SQL statement
sql = text("""
INSERT INTO image_sales_orders (vendor_name, order_item, order_boxes, time_cast)
VALUES (:vendor_name, :order_item, :order_boxes, NOW())
""")
# Prepare parameters
params = {
"vendor_name": vendor_name,
"order_item": order_item,
"order_boxes": order_boxes,
}
# Execute the SQL statement with parameters
conn.execute(sql, params)
conn.commit()
response_message = f"Dear [{vendor_name}],\n\nYour order has been completed as follows. \n\nItem Name : {order_item}\nQTY(Boxes) : {order_boxes}\n\nThanks."
return Response(response_message, status=200)
except (KeyError, ValueError) as e:
logging.error(f"Error inserting into database: {e}")
response_message = "Error processing your order. Please check the input data."
return Response(response_message, status=500)
else:
# Handle other function names if necessary
return Response("Unknown function.", status=400)
def transcribe_speech(audio_file):
with open(audio_file, "rb") as f:
content = f.read()
config = cloud_speech.RecognitionConfig(
auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
language_codes=["auto"],
#language_codes=["ko-KR"], -- In case that needs to choose specific language
model="chirp_2",
)
request = cloud_speech.RecognizeRequest(
recognizer=f"projects/{project_id}/locations/us-central1/recognizers/_",
config=config,
content=content,
)
response = client.recognize(request=request)
transcript = ""
for result in response.results:
transcript += result.alternatives[0].transcript
return transcript
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=int(os.environ.get("PORT", 8080)))
#app.run(debug=True)
def generate(image_url,prompt):
vertexai.init(project=project_id, location="us-central1")
model = GenerativeModel("gemini-1.5-pro-002")
image1 = Part.from_uri(uri=image_url, mime_type="image/jpeg")
prompt_default = """A retail store will give you an image with order details as an Input. You will identify the order details and provide an output as the following json format. You should not add any comment on it. The Box quantity should be arabic number. You can extract the item name from a given image or prompt. However, you should extract the retail store name or the quantity from only the text prompt but not the given image. All parameter values are strings. Don't assume any parameters. Do not wrap the json codes in JSON markers.
{\"function\":\"Z_SALES_ORDER_SRV/orderlistSet\",\"parameters\":{\"vendor_name\":Retail store name,\"order_item\":Item name,\"order_boxes\":Box quantity}}
If you are not clear on any parameter, provide the output as follows.
{\"function\":\"None\"}
You should not use the json markdown for the result.
Input :"""
generation_config = {
"max_output_tokens": 8192,
"temperature": 0,
"top_p": 0.95,
}
safety_settings = [
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold=SafetySetting.HarmBlockThreshold.OFF
),
]
responses = model.generate_content(
[prompt_default, image1, prompt],
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
response = ""
for content in responses:
response += content.text
print(f"Content: {content}")
print(f"Content type: {type(content)}")
print(f"Content attributes: {dir(content)}")
print(f"response_texts={response}")
if response.startswith('json'):
return clean_json_string(response)
else:
return response
def clean_json_string(json_string):
pattern = r'^```json\s*(.*?)\s*```$'
cleaned_string = re.sub(pattern, r'\1', json_string, flags=re.DOTALL)
return cleaned_string.strip()
Membuat index.html
vi ~/genai-agent/templates/index.html
Masukkan kode HTML ke dalam file index.html.
<!DOCTYPE html>
<html>
<head>
<title>GenAI Agent for Retail</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
/* Styles adjusted for chatbot interface */
body {
font-family: Arial, sans-serif;
background-color: #343541;
margin: 0;
padding: 0;
display: flex;
flex-direction: column;
height: 100vh;
}
.chat-container {
flex: 1;
overflow-y: auto;
padding: 10px;
background-color: #343541;
}
.message {
max-width: 80%;
margin-bottom: 15px;
padding: 10px;
border-radius: 10px;
color: #dcdcdc;
word-wrap: break-word;
}
.user-message {
background-color: #3e3f4b;
align-self: flex-end;
}
.assistant-message {
background-color: #444654;
align-self: flex-start;
}
.message-input {
padding: 10px;
background-color: #40414f;
display: flex;
align-items: center;
}
.message-input textarea {
flex: 1;
padding: 10px;
border: none;
border-radius: 5px;
resize: none;
background-color: #40414f;
color: #dcdcdc;
height: 40px;
max-height: 100px;
overflow-y: auto;
}
.message-input button {
padding: 15px;
margin-left: 5px;
background-color: #19c37d;
border: none;
border-radius: 5px;
color: white;
font-weight: bold;
cursor: pointer;
flex-shrink: 0;
}
.image-preview {
max-width: 100%;
border-radius: 10px;
margin-bottom: 10px;
}
.hidden {
display: none;
}
/* Media queries for responsive design */
@media screen and (max-width: 600px) {
.message {
max-width: 100%;
}
.message-input {
flex-direction: column;
}
.message-input textarea {
width: 100%;
margin-bottom: 10px;
}
.message-input button {
width: 100%;
margin: 5px 0;
}
}
</style>
</head>
<body>
<div class="chat-container" id="chat-container">
<!-- Messages will be appended here -->
</div>
<div class="message-input">
<input type="file" name="photo" id="photo" accept="image/*" capture="camera" class="hidden">
<button id="uploadImageButton">📷</button>
<button id="recordButton">🎤</button>
<textarea id="transcript" rows="1" placeholder="Enter a message here by voice or typing..."></textarea>
<button id="sendButton">Send</button>
</div>
<script>
const chatContainer = document.getElementById('chat-container');
const transcriptInput = document.getElementById('transcript');
const sendButton = document.getElementById('sendButton');
const recordButton = document.getElementById('recordButton');
const uploadImageButton = document.getElementById('uploadImageButton');
const photoInput = document.getElementById('photo');
let mediaRecorder;
let audioChunks = [];
let imageUrl = '';
function appendMessage(content, sender) {
const messageDiv = document.createElement('div');
messageDiv.classList.add('message', sender === 'user' ? 'user-message' : 'assistant-message');
if (typeof content === 'string') {
const messageContent = document.createElement('p');
messageContent.innerText = content;
messageDiv.appendChild(messageContent);
} else {
messageDiv.appendChild(content);
}
chatContainer.appendChild(messageDiv);
chatContainer.scrollTop = chatContainer.scrollHeight;
}
sendButton.addEventListener('click', () => {
const message = transcriptInput.value.trim();
if (message !== '') {
appendMessage(message, 'user');
// Prepare form data
const formData = new FormData();
formData.append('transcript', message);
formData.append('image_url', imageUrl);
// Send the message to the server
fetch('/orders', {
method: 'POST',
body: formData
})
.then(response => response.text())
.then(data => {
appendMessage(data, 'assistant');
// Reset imageUrl after sending
imageUrl = '';
})
.catch(error => {
console.error('Error:', error);
});
transcriptInput.value = '';
}
});
transcriptInput.addEventListener('keypress', (e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendButton.click();
}
});
recordButton.addEventListener('click', async () => {
if (mediaRecorder && mediaRecorder.state === 'recording') {
mediaRecorder.stop();
recordButton.innerText = '🎤';
return;
}
let stream = await navigator.mediaDevices.getUserMedia({ audio: true });
mediaRecorder = new MediaRecorder(stream);
mediaRecorder.start();
recordButton.innerText = '⏹️';
mediaRecorder.ondataavailable = event => {
audioChunks.push(event.data);
};
mediaRecorder.onstop = async () => {
let audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
audioChunks = [];
let reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = () => {
let base64String = reader.result;
// Send the audio data to the server
fetch('/upload', {
method: 'POST',
headers: {
'Content-Type': 'application/x-www-form-urlencoded'
},
body: 'audio_data=' + encodeURIComponent(base64String)
})
.then(response => response.json())
.then(data => {
transcriptInput.value = data.transcript;
})
.catch(error => {
console.error('Error:', error);
});
};
};
});
uploadImageButton.addEventListener('click', () => {
photoInput.click();
});
photoInput.addEventListener('change', function() {
if (photoInput.files && photoInput.files[0]) {
const file = photoInput.files[0];
const reader = new FileReader();
reader.onload = function(e) {
const img = document.createElement('img');
img.src = e.target.result;
img.classList.add('image-preview');
appendMessage(img, 'user');
};
reader.readAsDataURL(file);
const formData = new FormData();
formData.append('photo', photoInput.files[0]);
// Upload the image to the server
fetch('/upload_photo', {
method: 'POST',
body: formData,
})
.then(response => response.text())
.then(url => {
imageUrl = url;
})
.catch(error => {
console.error('Error uploading photo:', error);
});
}
});
</script>
</body>
</html>
Membuat orderlist.html
vi ~/genai-agent/templates/orderlist.html
Masukkan kode HTML ke dalam file orderlist.html.
<!DOCTYPE html>
<html>
<head>
<title>Order List</title>
<style>
body {
font-family: sans-serif;
line-height: 1.6;
margin: 20px;
background-color: #f4f4f4;
color: #333;
}
h1 {
text-align: center;
color: #28a745; /* Green header */
}
table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Add a subtle shadow */
}
th, td {
padding: 12px 15px;
text-align: left;
border-bottom: 1px solid #ddd;
}
th {
background-color: #28a745; /* Green header background */
color: white;
}
tr:nth-child(even) {
background-color: #f8f9fa; /* Alternating row color */
}
tr:hover {
background-color: #e9ecef; /* Hover effect */
}
</style>
</head>
<body>
<h1>Order List</h1>
<table>
<thead>
<tr>
<th>Order ID</th>
<th>Retail Store Name</th>
<th>Order Item</th>
<th>Order Boxes</th>
<th>Order Date</th>
<th>Order Time</th>
</tr>
</thead>
<tbody>
{% for order in orders %}
<tr>
<td>{{ order.OrderId }}</td>
<td>{{ order.VendorName }}</td>
<td>{{ order.OrderItem }}</td>
<td>{{ order.OrderBoxes }}</td>
<td>{{ order.OrderDate }}</td>
<td>{{ order.OrderTime }}</td>
</tr>
{% endfor %}
</tbody>
</table>
</body>
</html>
7. Men-deploy aplikasi flask ke Cloud Run
Dari direktori genai-agent, gunakan perintah berikut untuk men-deploy aplikasi ke Cloud Run:
cd ~/genai-agent
gcloud run deploy --source . genai-agent-sales-order \ --set-env-vars=PROJECT_ID=$PROJECT_ID \ --set-env-vars=REGION=$REGION \ --set-env-vars=INSTANCE_CONNECTION_NAME="${PROJECT_ID}:${REGION}:sql-retail-genai" \ --set-env-vars=DB_USER=aiagent \ --set-env-vars=DB_PASS=genaiaigent2@ \ --set-env-vars=DB_NAME=retail-orders \ --set-env-vars=GENAI_BUCKET=$GENAI_BUCKET \ --network=$PROJECT_ID \ --subnet=$SUBNET_NAME \ --vpc-egress=private-ranges-only \ --region=$REGION \ --allow-unauthenticated
Output yang diharapkan :
Deploying from source requires an Artifact Registry Docker repository to store built containers. A repository named [cloud-run-source-deploy] in region [us-central1] will be created. Do you want to continue (Y/n)? Y
Proses ini akan memerlukan waktu beberapa menit dan Anda akan melihat URL Layanan jika berhasil diselesaikan,
Output yang diharapkan :
.......... Building using Buildpacks and deploying container to Cloud Run service [genai-agent-sales-order] in project [xxxx] region [us-central1] ✓ Building and deploying... Done. ✓ Uploading sources... ✓ Building Container... Logs are available at [https://console.cloud.google.com/cloud-build/builds/395d141c-2dcf-465d-acfb-f97831c448c3?project=xxxx]. ✓ Creating Revision... ✓ Routing traffic... ✓ Setting IAM Policy... Done. Service [genai-agent-sales-order] revision [genai-agent-sales-order-00013-ckp] has been deployed and is serving 100 percent of traffic. Service URL: https://genai-agent-sales-order-xxxx.us-central1.run.app
Anda juga dapat memeriksa URL layanan di konsol Cloud Run.
8. Tes
- Ketik URL Layanan yang dihasilkan di langkah sebelumnya pada Deployment Cloud Run di perangkat seluler atau laptop Anda.
- Ambil foto Item untuk pesanan Anda dan Masukkan jumlah pesanan(kotak) dan nama toko retail dengan mengetik atau suara. <ex> "Saya ingin memesan tiga kotak ini. Oh tidak, maaf, tujuh kotak. Ini adalah Walmart Mountain View"
- Klik "Kirim" dan periksa apakah pesanan Anda sudah selesai.
- Anda dapat memeriksa histori pesanan di {Service URL}/orderlist
9. Selamat
Selamat! Anda telah membuat Agen GenAI yang mampu mengotomatiskan proses bisnis menggunakan Gemini pada multimodalitas Vertex AI.
Kami senang Anda dapat mengubah perintah dan menyesuaikan agen dengan kebutuhan spesifik Anda.