1. 概览
Video Intelligence API 支持您将 Google 视频分析技术用作应用的一部分。
在本实验中,您将重点了解如何将 Video Intelligence API 与 Python 搭配使用。
学习内容
- 如何设置环境
- 如何设置 Python
- 如何检测镜头变化
- 如何检测标签
- 如何检测露骨内容
- 如何转录语音
- 如何检测和跟踪文本
- 如何检测和跟踪对象
- 如何检测和跟踪徽标
所需条件
调查问卷
您将如何使用本教程?
您如何评价使用 Python 的体验?
您如何评价自己在 Google Cloud 服务方面的经验水平?
<ph type="x-smartling-placeholder">2. 设置和要求
自定进度的环境设置
- 登录 Google Cloud 控制台,然后创建一个新项目或重复使用现有项目。如果您还没有 Gmail 或 Google Workspace 账号,则必须创建一个。
- 项目名称是此项目参与者的显示名称。它是 Google API 尚未使用的字符串。您可以随时对其进行更新。
- 项目 ID 在所有 Google Cloud 项目中是唯一的,并且是不可变的(一经设置便无法更改)。Cloud 控制台会自动生成一个唯一字符串;通常情况下,您无需关注该字符串。在大多数 Codelab 中,您都需要引用项目 ID(通常用
PROJECT_ID
标识)。如果您不喜欢生成的 ID,可以再随机生成一个 ID。或者,您也可以尝试自己的项目 ID,看看是否可用。完成此步骤后便无法更改该 ID,并且此 ID 在项目期间会一直保留。 - 此外,还有第三个值,即部分 API 使用的项目编号,供您参考。如需详细了解所有这三个值,请参阅文档。
- 接下来,您需要在 Cloud 控制台中启用结算功能,以便使用 Cloud 资源/API。运行此 Codelab 应该不会产生太多的费用(如果有的话)。若要关闭资源以避免产生超出本教程范围的结算费用,您可以删除自己创建的资源或删除项目。Google Cloud 新用户符合参与 300 美元免费试用计划的条件。
启动 Cloud Shell
虽然 Google Cloud 可以通过笔记本电脑远程操作,但在此 Codelab 中,您将使用 Cloud Shell,这是一个在云端运行的命令行环境。
激活 Cloud Shell
- 在 Cloud Console 中,点击激活 Cloud Shell。
如果这是您第一次启动 Cloud Shell,系统会显示一个中间屏幕,说明它是什么。如果您看到中间屏幕,请点击继续。
预配和连接到 Cloud Shell 只需花几分钟时间。
这个虚拟机装有所需的所有开发工具。它提供了一个持久的 5 GB 主目录,并在 Google Cloud 中运行,大大增强了网络性能和身份验证功能。您在此 Codelab 中的大部分(即使不是全部)工作都可以通过浏览器完成。
在连接到 Cloud Shell 后,您应该会看到自己已通过身份验证,并且相关项目已设为您的项目 ID。
- 在 Cloud Shell 中运行以下命令以确认您已通过身份验证:
gcloud auth list
命令输出
Credentialed Accounts ACTIVE ACCOUNT * <my_account>@<my_domain.com> To set the active account, run: $ gcloud config set account `ACCOUNT`
- 在 Cloud Shell 中运行以下命令,以确认 gcloud 命令了解您的项目:
gcloud config list project
命令输出
[core] project = <PROJECT_ID>
如果不是上述结果,您可以使用以下命令进行设置:
gcloud config set project <PROJECT_ID>
命令输出
Updated property [core/project].
3. 环境设置
在开始使用 Video Intelligence API 之前,请在 Cloud Shell 中运行以下命令以启用该 API:
gcloud services enable videointelligence.googleapis.com
您应该会看到与以下类似的内容:
Operation "operations/..." finished successfully.
现在,您可以使用 Video Intelligence API 了!
导航到您的主目录:
cd ~
创建一个 Python 虚拟环境来隔离依赖项:
virtualenv venv-videointel
激活此虚拟环境:
source venv-videointel/bin/activate
安装 IPython 和 Video Intelligence API 客户端库:
pip install ipython google-cloud-videointelligence
您应该会看到与以下类似的内容:
... Installing collected packages: ..., ipython, google-cloud-videointelligence Successfully installed ... google-cloud-videointelligence-2.11.0 ...
现在,您可以使用 Video Intelligence API 客户端库了!
在接下来的步骤中,您将使用在上一步中安装的名为 IPython 的交互式 Python 解释器。在 Cloud Shell 中运行 ipython
来启动会话:
ipython
您应该会看到与以下类似的内容:
Python 3.9.2 (default, Feb 28 2021, 17:03:44) Type 'copyright', 'credits' or 'license' for more information IPython 8.12.0 -- An enhanced Interactive Python. Type '?' for help. In [1]:
4. 示例视频
您可以使用 Video Intelligence API 为存储在 Cloud Storage 中或以数据字节形式提供的视频添加注释。
在接下来的步骤中,您将使用存储在 Cloud Storage 中的示例视频。您可以在浏览器中观看视频。
预备,平稳,出发!
5. 检测镜头变化
您可以使用 Video Intelligence API 检测视频中的镜头变化。一个镜头是视频的一个片段,也就是具有视觉连续性的一系列帧。
将以下代码复制到您的 IPython 会话中:
from typing import cast
from google.cloud import videointelligence_v1 as vi
def detect_shot_changes(video_uri: str) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.SHOT_CHANGE_DETECTION]
request = vi.AnnotateVideoRequest(input_uri=video_uri, features=features)
print(f'Processing video: "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
请花点时间研究一下代码,看看它如何使用带有 SHOT_CHANGE_DETECTION
参数的 annotate_video
客户端库方法分析视频并检测镜头变化。
调用函数以分析视频:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
results = detect_shot_changes(video_uri)
等待视频处理完毕:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
添加此函数以输出视频画面:
def print_video_shots(results: vi.VideoAnnotationResults):
shots = results.shot_annotations
print(f" Video shots: {len(shots)} ".center(40, "-"))
for i, shot in enumerate(shots):
t1 = shot.start_time_offset.total_seconds()
t2 = shot.end_time_offset.total_seconds()
print(f"{i+1:>3} | {t1:7.3f} | {t2:7.3f}")
调用函数:
print_video_shots(results)
您应该会看到与以下类似的内容:
----------- Video shots: 34 ------------ 1 | 0.000 | 12.880 2 | 12.920 | 21.680 3 | 21.720 | 27.880 ... 32 | 135.160 | 138.320 33 | 138.360 | 146.200 34 | 146.240 | 162.520
如果您提取每个镜头的中间帧并将其排列在一面墙上,就可以生成视频的视觉摘要:
摘要
在此步骤中,您可以使用 Video Intelligence API 对视频执行镜头变化检测。您可以详细了解如何检测镜头变化。
6. 检测标签
您可以使用 Video Intelligence API 检测视频中的标签。标签根据视频的视觉内容来描述视频。
将以下代码复制到您的 IPython 会话中:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_labels(
video_uri: str,
mode: vi.LabelDetectionMode,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.LABEL_DETECTION]
config = vi.LabelDetectionConfig(label_detection_mode=mode)
context = vi.VideoContext(segments=segments, label_detection_config=config)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
请花点时间研究一下代码,看看它如何使用带有 LABEL_DETECTION
参数的 annotate_video
客户端库方法分析视频并检测标签。
调用此函数以分析视频的前 37 秒:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
mode = vi.LabelDetectionMode.SHOT_MODE
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=0),
end_time_offset=timedelta(seconds=37),
)
results = detect_labels(video_uri, mode, [segment])
等待视频处理完毕:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
添加此函数可输出视频级别的标签:
def print_video_labels(results: vi.VideoAnnotationResults):
labels = sorted_by_first_segment_confidence(results.segment_label_annotations)
print(f" Video labels: {len(labels)} ".center(80, "-"))
for label in labels:
categories = category_entities_to_str(label.category_entities)
for segment in label.segments:
confidence = segment.confidence
t1 = segment.segment.start_time_offset.total_seconds()
t2 = segment.segment.end_time_offset.total_seconds()
print(
f"{confidence:4.0%}",
f"{t1:7.3f}",
f"{t2:7.3f}",
f"{label.entity.description}{categories}",
sep=" | ",
)
def sorted_by_first_segment_confidence(
labels: Sequence[vi.LabelAnnotation],
) -> Sequence[vi.LabelAnnotation]:
def first_segment_confidence(label: vi.LabelAnnotation) -> float:
return label.segments[0].confidence
return sorted(labels, key=first_segment_confidence, reverse=True)
def category_entities_to_str(category_entities: Sequence[vi.Entity]) -> str:
if not category_entities:
return ""
entities = ", ".join([e.description for e in category_entities])
return f" ({entities})"
调用函数:
print_video_labels(results)
您应该会看到与以下类似的内容:
------------------------------- Video labels: 10 ------------------------------- 96% | 0.000 | 36.960 | nature 74% | 0.000 | 36.960 | vegetation 59% | 0.000 | 36.960 | tree (plant) 56% | 0.000 | 36.960 | forest (geographical feature) 49% | 0.000 | 36.960 | leaf (plant) 43% | 0.000 | 36.960 | flora (plant) 38% | 0.000 | 36.960 | nature reserve (geographical feature) 38% | 0.000 | 36.960 | woodland (forest) 35% | 0.000 | 36.960 | water resources (water) 32% | 0.000 | 36.960 | sunlight (light)
得益于这些视频级标签,您可以了解视频的开头主要是关于自然和植被的。
添加此函数,以输出镜头级别的标签:
def print_shot_labels(results: vi.VideoAnnotationResults):
labels = sorted_by_first_segment_start_and_confidence(
results.shot_label_annotations
)
print(f" Shot labels: {len(labels)} ".center(80, "-"))
for label in labels:
categories = category_entities_to_str(label.category_entities)
print(f"{label.entity.description}{categories}")
for segment in label.segments:
confidence = segment.confidence
t1 = segment.segment.start_time_offset.total_seconds()
t2 = segment.segment.end_time_offset.total_seconds()
print(f"{confidence:4.0%} | {t1:7.3f} | {t2:7.3f}")
def sorted_by_first_segment_start_and_confidence(
labels: Sequence[vi.LabelAnnotation],
) -> Sequence[vi.LabelAnnotation]:
def first_segment_start_and_confidence(label: vi.LabelAnnotation):
first_segment = label.segments[0]
ms = first_segment.segment.start_time_offset.total_seconds()
return (ms, -first_segment.confidence)
return sorted(labels, key=first_segment_start_and_confidence)
调用函数:
print_shot_labels(results)
您应该会看到与以下类似的内容:
------------------------------- Shot labels: 29 -------------------------------- planet (astronomical object) 83% | 0.000 | 12.880 earth (planet) 53% | 0.000 | 12.880 water resources (water) 43% | 0.000 | 12.880 aerial photography (photography) 43% | 0.000 | 12.880 vegetation 32% | 0.000 | 12.880 92% | 12.920 | 21.680 83% | 21.720 | 27.880 77% | 27.920 | 31.800 76% | 31.840 | 34.720 ... butterfly (insect, animal) 84% | 34.760 | 36.960 ...
得益于这些镜头级标签,您可以判断出视频开头是一颗行星(可能是地球)的镜头,34.760-36.960s
镜头中有一只蝴蝶,
摘要
在此步骤中,您可以使用 Video Intelligence API 对视频执行标签检测。不妨详细了解如何检测标签。
7. 检测露骨内容
您可以使用 Video Intelligence API 检测视频中的露骨内容。露骨内容是指通常不适合 18 周岁以下人群的成人内容,包括但不限于裸露、性行为和色情内容。检测仅根据每帧的视觉信号执行(不使用音频)。响应包含从 VERY_UNLIKELY
到 VERY_LIKELY
的可能性值。
将以下代码复制到您的 IPython 会话中:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_explicit_content(
video_uri: str,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.EXPLICIT_CONTENT_DETECTION]
context = vi.VideoContext(segments=segments)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
请花点时间研究一下代码,看看它如何使用带有 EXPLICIT_CONTENT_DETECTION
参数的 annotate_video
客户端库方法分析视频并检测露骨内容。
调用此函数以分析视频的前 10 秒:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=0),
end_time_offset=timedelta(seconds=10),
)
results = detect_explicit_content(video_uri, [segment])
等待视频处理完毕:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
添加此函数,以输出不同的可能性计数:
def print_explicit_content(results: vi.VideoAnnotationResults):
from collections import Counter
frames = results.explicit_annotation.frames
likelihood_counts = Counter([f.pornography_likelihood for f in frames])
print(f" Explicit content frames: {len(frames)} ".center(40, "-"))
for likelihood in vi.Likelihood:
print(f"{likelihood.name:<22}: {likelihood_counts[likelihood]:>3}")
调用函数:
print_explicit_content(results)
您应该会看到与以下类似的内容:
----- Explicit content frames: 10 ------ LIKELIHOOD_UNSPECIFIED: 0 VERY_UNLIKELY : 10 UNLIKELY : 0 POSSIBLE : 0 LIKELY : 0 VERY_LIKELY : 0
添加此函数以输出帧详情:
def print_frames(results: vi.VideoAnnotationResults, likelihood: vi.Likelihood):
frames = results.explicit_annotation.frames
frames = [f for f in frames if f.pornography_likelihood == likelihood]
print(f" {likelihood.name} frames: {len(frames)} ".center(40, "-"))
for frame in frames:
print(frame.time_offset)
调用函数:
print_frames(results, vi.Likelihood.VERY_UNLIKELY)
您应该会看到与以下类似的内容:
------- VERY_UNLIKELY frames: 10 ------- 0:00:00.365992 0:00:01.279206 0:00:02.268336 0:00:03.289253 0:00:04.400163 0:00:05.291547 0:00:06.449558 0:00:07.452751 0:00:08.577405 0:00:09.554514
摘要
在此步骤中,您可以使用 Video Intelligence API 对视频执行露骨内容检测。您可以详细了解如何检测露骨内容。
8. 转录语音
您可以使用 Video Intelligence API 将视频语音转录为文本。
将以下代码复制到您的 IPython 会话中:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def transcribe_speech(
video_uri: str,
language_code: str,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.SPEECH_TRANSCRIPTION]
config = vi.SpeechTranscriptionConfig(
language_code=language_code,
enable_automatic_punctuation=True,
)
context = vi.VideoContext(
segments=segments,
speech_transcription_config=config,
)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
请花点时间研究一下代码,看看它如何使用带有 SPEECH_TRANSCRIPTION
参数的 annotate_video
客户端库方法分析视频并转写语音。
调用该函数以分析从第 55 秒到第 80 秒的视频:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
language_code = "en-GB"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=55),
end_time_offset=timedelta(seconds=80),
)
results = transcribe_speech(video_uri, language_code, [segment])
等待视频处理完毕:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
添加此函数以输出转录的语音:
def print_video_speech(results: vi.VideoAnnotationResults, min_confidence: float = 0.8):
def keep_transcription(transcription: vi.SpeechTranscription) -> bool:
return min_confidence <= transcription.alternatives[0].confidence
transcriptions = results.speech_transcriptions
transcriptions = [t for t in transcriptions if keep_transcription(t)]
print(f" Speech transcriptions: {len(transcriptions)} ".center(80, "-"))
for transcription in transcriptions:
first_alternative = transcription.alternatives[0]
confidence = first_alternative.confidence
transcript = first_alternative.transcript
print(f" {confidence:4.0%} | {transcript.strip()}")
调用函数:
print_video_speech(results)
您应该会看到与以下类似的内容:
--------------------------- Speech transcriptions: 2 --------------------------- 91% | I was keenly aware of secret movements in the trees. 92% | I looked into his large and lustrous eyes. They seem somehow to express his entire personality.
添加此函数,以输出已检测到的字词及其时间戳的列表:
def print_word_timestamps(
results: vi.VideoAnnotationResults,
min_confidence: float = 0.8,
):
def keep_transcription(transcription: vi.SpeechTranscription) -> bool:
return min_confidence <= transcription.alternatives[0].confidence
transcriptions = results.speech_transcriptions
transcriptions = [t for t in transcriptions if keep_transcription(t)]
print(" Word timestamps ".center(80, "-"))
for transcription in transcriptions:
first_alternative = transcription.alternatives[0]
confidence = first_alternative.confidence
for word in first_alternative.words:
t1 = word.start_time.total_seconds()
t2 = word.end_time.total_seconds()
word = word.word
print(f"{confidence:4.0%} | {t1:7.3f} | {t2:7.3f} | {word}")
调用函数:
print_word_timestamps(results)
您应该会看到与以下类似的内容:
------------------------------- Word timestamps -------------------------------- 93% | 55.000 | 55.700 | I 93% | 55.700 | 55.900 | was 93% | 55.900 | 56.300 | keenly 93% | 56.300 | 56.700 | aware 93% | 56.700 | 56.900 | of ... 94% | 76.900 | 77.400 | express 94% | 77.400 | 77.600 | his 94% | 77.600 | 78.200 | entire 94% | 78.200 | 78.500 | personality.
摘要
在此步骤中,您可以使用 Video Intelligence API 对视频执行语音转录。您可以详细了解如何转录音频。
9. 检测和跟踪文本
您可以使用 Video Intelligence API 检测和跟踪视频中的文本。
将以下代码复制到您的 IPython 会话中:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_text(
video_uri: str,
language_hints: Optional[Sequence[str]] = None,
segments: Optional[Sequence[vi.VideoSegment]] = None,
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.TEXT_DETECTION]
config = vi.TextDetectionConfig(
language_hints=language_hints,
)
context = vi.VideoContext(
segments=segments,
text_detection_config=config,
)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
请花点时间研究一下代码,看看它如何使用带有 TEXT_DETECTION
参数的 annotate_video
客户端库方法分析视频并检测文本。
调用该函数以分析从 13 秒到 27 秒的视频:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=13),
end_time_offset=timedelta(seconds=27),
)
results = detect_text(video_uri, segments=[segment])
等待视频处理完毕:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
添加此函数以输出检测到的文本:
def print_video_text(results: vi.VideoAnnotationResults, min_frames: int = 15):
annotations = sorted_by_first_segment_end(results.text_annotations)
print(" Detected text ".center(80, "-"))
for annotation in annotations:
for text_segment in annotation.segments:
frames = len(text_segment.frames)
if frames < min_frames:
continue
text = annotation.text
confidence = text_segment.confidence
start = text_segment.segment.start_time_offset
seconds = segment_seconds(text_segment.segment)
print(text)
print(f" {confidence:4.0%} | {start} + {seconds:.1f}s | {frames} fr.")
def sorted_by_first_segment_end(
annotations: Sequence[vi.TextAnnotation],
) -> Sequence[vi.TextAnnotation]:
def first_segment_end(annotation: vi.TextAnnotation) -> int:
return annotation.segments[0].segment.end_time_offset.total_seconds()
return sorted(annotations, key=first_segment_end)
def segment_seconds(segment: vi.VideoSegment) -> float:
t1 = segment.start_time_offset.total_seconds()
t2 = segment.end_time_offset.total_seconds()
return t2 - t1
调用函数:
print_video_text(results)
您应该会看到与以下类似的内容:
-------------------------------- Detected text --------------------------------- GOMBE NATIONAL PARK 99% | 0:00:15.760000 + 1.7s | 15 fr. TANZANIA 100% | 0:00:15.760000 + 4.8s | 39 fr. With words and narration by 100% | 0:00:23.200000 + 3.6s | 31 fr. Jane Goodall 99% | 0:00:23.080000 + 3.8s | 33 fr.
添加此函数,以输出检测到的文本帧和边界框的列表:
def print_text_frames(results: vi.VideoAnnotationResults, contained_text: str):
# Vertex order: top-left, top-right, bottom-right, bottom-left
def box_top_left(box: vi.NormalizedBoundingPoly) -> str:
tl = box.vertices[0]
return f"({tl.x:.5f}, {tl.y:.5f})"
def box_bottom_right(box: vi.NormalizedBoundingPoly) -> str:
br = box.vertices[2]
return f"({br.x:.5f}, {br.y:.5f})"
annotations = results.text_annotations
annotations = [a for a in annotations if contained_text in a.text]
for annotation in annotations:
print(f" {annotation.text} ".center(80, "-"))
for text_segment in annotation.segments:
for frame in text_segment.frames:
frame_ms = frame.time_offset.total_seconds()
box = frame.rotated_bounding_box
print(
f"{frame_ms:>7.3f}",
box_top_left(box),
box_bottom_right(box),
sep=" | ",
)
调用此函数,以检查哪些帧显示了讲述者的姓名:
contained_text = "Goodall"
print_text_frames(results, contained_text)
您应该会看到与以下类似的内容:
--------------------------------- Jane Goodall --------------------------------- 23.080 | (0.39922, 0.49861) | (0.62752, 0.55888) 23.200 | (0.38750, 0.49028) | (0.62692, 0.56306) ... 26.800 | (0.36016, 0.49583) | (0.61094, 0.56048) 26.920 | (0.45859, 0.49583) | (0.60365, 0.56174)
如果您在相应的帧上绘制边界框,将得到以下结果:
摘要
在此步骤中,您可以使用 Video Intelligence API 对视频执行文本检测和跟踪。您可以详细了解如何检测和跟踪文字。
10. 检测和跟踪对象
您可以使用 Video Intelligence API 检测和跟踪视频中的对象。
将以下代码复制到您的 IPython 会话中:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def track_objects(
video_uri: str, segments: Optional[Sequence[vi.VideoSegment]] = None
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.OBJECT_TRACKING]
context = vi.VideoContext(segments=segments)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
请花点时间研究一下代码,看看它如何使用带有 OBJECT_TRACKING
参数的 annotate_video
客户端库方法分析视频并检测对象。
调用函数来分析从 98 秒到 112 秒的视频:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=98),
end_time_offset=timedelta(seconds=112),
)
results = track_objects(video_uri, [segment])
等待视频处理完毕:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
添加此函数,以输出检测到的对象列表:
def print_detected_objects(
results: vi.VideoAnnotationResults,
min_confidence: float = 0.7,
):
annotations = results.object_annotations
annotations = [a for a in annotations if min_confidence <= a.confidence]
print(
f" Detected objects: {len(annotations)}"
f" ({min_confidence:.0%} <= confidence) ".center(80, "-")
)
for annotation in annotations:
entity = annotation.entity
description = entity.description
entity_id = entity.entity_id
confidence = annotation.confidence
t1 = annotation.segment.start_time_offset.total_seconds()
t2 = annotation.segment.end_time_offset.total_seconds()
frames = len(annotation.frames)
print(
f"{description:<22}",
f"{entity_id:<10}",
f"{confidence:4.0%}",
f"{t1:>7.3f}",
f"{t2:>7.3f}",
f"{frames:>2} fr.",
sep=" | ",
)
调用函数:
print_detected_objects(results)
您应该会看到与以下类似的内容:
------------------- Detected objects: 3 (70% <= confidence) -------------------- insect | /m/03vt0 | 87% | 98.840 | 101.720 | 25 fr. insect | /m/03vt0 | 71% | 108.440 | 111.080 | 23 fr. butterfly | /m/0cyf8 | 91% | 111.200 | 111.920 | 7 fr.
添加此函数,以输出检测到的对象帧和边界框的列表:
def print_object_frames(
results: vi.VideoAnnotationResults,
entity_id: str,
min_confidence: float = 0.7,
):
def keep_annotation(annotation: vi.ObjectTrackingAnnotation) -> bool:
return (
annotation.entity.entity_id == entity_id
and min_confidence <= annotation.confidence
)
annotations = results.object_annotations
annotations = [a for a in annotations if keep_annotation(a)]
for annotation in annotations:
description = annotation.entity.description
confidence = annotation.confidence
print(
f" {description},"
f" confidence: {confidence:.0%},"
f" frames: {len(annotation.frames)} ".center(80, "-")
)
for frame in annotation.frames:
t = frame.time_offset.total_seconds()
box = frame.normalized_bounding_box
print(
f"{t:>7.3f}",
f"({box.left:.5f}, {box.top:.5f})",
f"({box.right:.5f}, {box.bottom:.5f})",
sep=" | ",
)
使用昆虫的实体 ID 调用函数:
insect_entity_id = "/m/03vt0"
print_object_frames(results, insect_entity_id)
您应该会看到与以下类似的内容:
--------------------- insect, confidence: 87%, frames: 25 ---------------------- 98.840 | (0.49327, 0.19617) | (0.69905, 0.69633) 98.960 | (0.49559, 0.19308) | (0.70631, 0.69671) ... 101.600 | (0.46668, 0.19776) | (0.76619, 0.69371) 101.720 | (0.46805, 0.20053) | (0.76447, 0.68703) --------------------- insect, confidence: 71%, frames: 23 ---------------------- 108.440 | (0.47343, 0.10694) | (0.63821, 0.98332) 108.560 | (0.46960, 0.10206) | (0.63033, 0.98285) ... 110.960 | (0.49466, 0.05102) | (0.65941, 0.99357) 111.080 | (0.49572, 0.04728) | (0.65762, 0.99868)
如果您在相应的帧上绘制边界框,将得到以下结果:
摘要
在此步骤中,您可以使用 Video Intelligence API 对视频执行对象检测和跟踪。您可以详细了解如何检测和跟踪对象。
11. 检测和跟踪徽标
您可以使用 Video Intelligence API 检测和跟踪视频中的徽标。可检测出超过 10 万个品牌和徽标。
将以下代码复制到您的 IPython 会话中:
from datetime import timedelta
from typing import Optional, Sequence, cast
from google.cloud import videointelligence_v1 as vi
def detect_logos(
video_uri: str, segments: Optional[Sequence[vi.VideoSegment]] = None
) -> vi.VideoAnnotationResults:
video_client = vi.VideoIntelligenceServiceClient()
features = [vi.Feature.LOGO_RECOGNITION]
context = vi.VideoContext(segments=segments)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
print(f'Processing video "{video_uri}"...')
operation = video_client.annotate_video(request)
# Wait for operation to complete
response = cast(vi.AnnotateVideoResponse, operation.result())
# A single video is processed
results = response.annotation_results[0]
return results
请花点时间研究一下代码,看看它如何使用带有 LOGO_RECOGNITION
参数的 annotate_video
客户端库方法分析视频并检测徽标。
调用该函数以分析视频的倒数第二个序列:
video_uri = "gs://cloud-samples-data/video/JaneGoodall.mp4"
segment = vi.VideoSegment(
start_time_offset=timedelta(seconds=146),
end_time_offset=timedelta(seconds=156),
)
results = detect_logos(video_uri, [segment])
等待视频处理完毕:
Processing video: "gs://cloud-samples-data/video/JaneGoodall.mp4"...
添加此函数以输出检测到的徽标列表:
def print_detected_logos(results: vi.VideoAnnotationResults):
annotations = results.logo_recognition_annotations
print(f" Detected logos: {len(annotations)} ".center(80, "-"))
for annotation in annotations:
entity = annotation.entity
entity_id = entity.entity_id
description = entity.description
for track in annotation.tracks:
confidence = track.confidence
t1 = track.segment.start_time_offset.total_seconds()
t2 = track.segment.end_time_offset.total_seconds()
logo_frames = len(track.timestamped_objects)
print(
f"{confidence:4.0%}",
f"{t1:>7.3f}",
f"{t2:>7.3f}",
f"{logo_frames:>3} fr.",
f"{entity_id:<15}",
f"{description}",
sep=" | ",
)
调用函数:
print_detected_logos(results)
您应该会看到与以下类似的内容:
------------------------------ Detected logos: 1 ------------------------------- 92% | 150.680 | 155.720 | 43 fr. | /m/055t58 | Google Maps
添加此函数,以输出检测到的徽标帧和边界框列表:
def print_logo_frames(results: vi.VideoAnnotationResults, entity_id: str):
def keep_annotation(annotation: vi.LogoRecognitionAnnotation) -> bool:
return annotation.entity.entity_id == entity_id
annotations = results.logo_recognition_annotations
annotations = [a for a in annotations if keep_annotation(a)]
for annotation in annotations:
description = annotation.entity.description
for track in annotation.tracks:
confidence = track.confidence
print(
f" {description},"
f" confidence: {confidence:.0%},"
f" frames: {len(track.timestamped_objects)} ".center(80, "-")
)
for timestamped_object in track.timestamped_objects:
t = timestamped_object.time_offset.total_seconds()
box = timestamped_object.normalized_bounding_box
print(
f"{t:>7.3f}",
f"({box.left:.5f}, {box.top:.5f})",
f"({box.right:.5f}, {box.bottom:.5f})",
sep=" | ",
)
使用 Google 地图徽标实体 ID 调用该函数:
maps_entity_id = "/m/055t58"
print_logo_frames(results, maps_entity_id)
您应该会看到与以下类似的内容:
------------------- Google Maps, confidence: 92%, frames: 43 ------------------- 150.680 | (0.42024, 0.28633) | (0.58192, 0.64220) 150.800 | (0.41713, 0.27822) | (0.58318, 0.63556) ... 155.600 | (0.41775, 0.27701) | (0.58372, 0.63986) 155.720 | (0.41688, 0.28005) | (0.58335, 0.63954)
如果您在相应的帧上绘制边界框,将得到以下结果:
摘要
在此步骤中,您可以使用 Video Intelligence API 对视频执行徽标检测和跟踪。您可以详细了解如何检测和跟踪徽标。
12. 检测多个特征
您可以发出下面这种请求,以便一次性获取所有数据分析:
from google.cloud import videointelligence_v1 as vi
video_client = vi.VideoIntelligenceServiceClient()
video_uri = "gs://..."
features = [
vi.Feature.SHOT_CHANGE_DETECTION,
vi.Feature.LABEL_DETECTION,
vi.Feature.EXPLICIT_CONTENT_DETECTION,
vi.Feature.SPEECH_TRANSCRIPTION,
vi.Feature.TEXT_DETECTION,
vi.Feature.OBJECT_TRACKING,
vi.Feature.LOGO_RECOGNITION,
vi.Feature.FACE_DETECTION, # NEW
vi.Feature.PERSON_DETECTION, # NEW
]
context = vi.VideoContext(
segments=...,
shot_change_detection_config=...,
label_detection_config=...,
explicit_content_detection_config=...,
speech_transcription_config=...,
text_detection_config=...,
object_tracking_config=...,
face_detection_config=..., # NEW
person_detection_config=..., # NEW
)
request = vi.AnnotateVideoRequest(
input_uri=video_uri,
features=features,
video_context=context,
)
# video_client.annotate_video(request)
13. 恭喜!
您已了解如何通过 Python 使用 Video Intelligence API!
清理
如需在 Cloud Shell 中清理开发环境,请执行以下操作:
- 如果您仍处于 IPython 会话,请返回到 shell:
exit
- 停止使用 Python 虚拟环境:
deactivate
- 删除虚拟环境文件夹:
cd ~ ; rm -rf ./venv-videointel
如需从 Cloud Shell 中删除 Google Cloud 项目,请执行以下操作:
- 检索当前项目 ID:
PROJECT_ID=$(gcloud config get-value core/project)
- 确保这是您要删除的项目:
echo $PROJECT_ID
- 删除项目:
gcloud projects delete $PROJECT_ID
了解详情
- 在浏览器中测试演示:https://zackakil.github.io/video-intelligence-api-visualiser
- Video Intelligence 文档:https://cloud.google.com/video-intelligence/docs
- Beta 版功能:https://cloud.google.com/video-intelligence/docs/beta
- Google Cloud 上的 Python:https://cloud.google.com/python
- Python 版 Cloud 客户端库:https://github.com/googleapis/google-cloud-python
许可
此作品已获得 Creative Commons Attribution 2.0 通用许可授权。